THUẬT TOÁN ĐIỂM GẦN KỀ ĐA QUÁN TÍNH CHO BÀI TOÁN NGHIỆM CHUNG TÁCH CỦA LỚP PHƯƠNG TRÌNH TOÁN TỬ ĐƠN ĐIỆU
Thông tin bài báo
Ngày nhận bài: 20/04/25                Ngày hoàn thiện: 09/05/25                Ngày đăng: 09/05/25Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] S. Reich, M. T. Truong, and T. N. H. Mai, "The split feasibility problem with multiple output
sets in Hilbert spaces," Optimization Letters, vol. 14, pp. 2335–2350, 2020.
[2] S. Reich and M. T. Truong, "Two new self-adaptive algorithms for solving the split common
null point problem with multiple output sets in Hilbert spaces," Journal of Fixed Point Theory
and Applications, vol. 23, 2021, Art. no. 16.
[3] S. Reich, M. T. Truong, T. T. T. Nguyen, and T. N. H. Mai, "A new self-adaptive algorithm
for solving the split common fixed point problem with multiple output sets in Hilbert spaces,"
Numerical Algorithms, vol. 89, pp. 1031–1047, 2022.
[4] S. Reich and M. T. Truong, "A generalized cyclic iterative method for solving variational in-
equalities over the solution set of a split common fixed point problem," Numerical Algorithms,
vol. 91, pp. 1–17, 2023.
[5] S. Reich, M. T. Truong, and T. V. H. Phan, "New algorithms for solving the split common
zero point problem in Hilbert space," Numerical Functional Analysis and Optimization, vol.
44, pp. 1012–1030, 2023.
[6] B. Martinet, "Regularization of variational inequalities by successive approximations," (in
French), RAIRO - Operations Research., vol. 4, pp. 154–158, 1970.
[7] F. Alvarez and H. Attouch, "An inertial proximal method for maximal monotone operators via
discretization of a nonlinear oscillator with damping," Set-Valued Analysis, vol. 9, pp. 3–11,
2001.
[8] C. Zhang, Q. L. Dong, and J. Chen, "Multi-step inertial proximal contraction algorithms for
monotone variational inclusion problems," Carpathian Journal of Mathematics, vol. 36, pp.
159–177, 2020.
[9] S. H. Nguyen, M. T. Truong, and T. V. H. Phan, "Inertial proximal point algorithm for the
split common solution problem of monotone operator equations," Computational and Applied
Mathematics, vol. 42, 2023, Art. no. 303.
[10] S. Reich, M. T. Truong, and T. V. H. Phan, "Inertial proximal point algorithms for solving
a class of split feasibility problems," Journal of Optimization Theory and Applications, vol.
200, pp. 951–977, 2024.
DOI: https://doi.org/10.34238/tnu-jst.12632
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu