CẤU TRÚC ĐIỆN TỬ VÀ TÍNH CHẤT QUANG CỦA CỤM NGUYÊN TỬ M13 VÀ M12Cr (M = Cu, Ag, và Au): NGHIÊN CỨU SO SÁNH SỬ DỤNG PHƯƠNG PHÁP PHIẾM HÀM MẬT ĐỘ | Đăng | TNU Journal of Science and Technology

CẤU TRÚC ĐIỆN TỬ VÀ TÍNH CHẤT QUANG CỦA CỤM NGUYÊN TỬ M13 VÀ M12Cr (M = Cu, Ag, và Au): NGHIÊN CỨU SO SÁNH SỬ DỤNG PHƯƠNG PHÁP PHIẾM HÀM MẬT ĐỘ

Thông tin bài báo

Ngày nhận bài: 25/04/25                Ngày hoàn thiện: 28/05/25                Ngày đăng: 28/05/25

Các tác giả

1. Nguyễn Văn Đăng, Trường Đại học Khoa học - ĐH Thái Nguyên
2. Vi Tiến Thành, Trường Đại học Khoa học - ĐH Thái Nguyên
3. Nguyễn Thị Mai, Viện Khoa học Vật liệu - Viện Hàn lâm Khoa học và Công nghệ Việt Nam
4. Nguyễn Thị Dung, Trường Đại học Khoa học - ĐH Thái Nguyên
5. Phan Thanh Phương, Trường Đại học Khoa học - ĐH Thái Nguyên
6. Trần Xuân Quý, Trường Đại học Khoa học - ĐH Thái Nguyên
7. Lê Thị Tuyết Ngân, Trường Đại học Công nghệ Thông tin và Truyền thông - ĐH Thái Nguyên
8. Nguyễn Thanh Tùng, Viện Khoa học Vật liệu - Viện Hàn lâm Khoa học và Công nghệ Việt Nam
9. Ngô Thị Lan Email to author, Trường Đại học Khoa học - ĐH Thái Nguyên

Tóm tắt


Cụm nguyên tử gần đây nổi lên như những viên gạch đầu tiên hứa hẹn tiềm năng ứng dụng cho các vật liệu cấu trúc nano tiên tiến nhờ vào tính chất xúc tác, từ tính và điện tử thú vị. Nghiên cứu này so sánh phổ hồng ngoại và phổ hấp thụ phân tử của các cấu trúc M13 và M12Cr (M = Cu, Ag và Au) ở trạng thái cơ bản sử dụng phương pháp phiếm hàm mật độ và phiếm hàm mật độ phụ thuộc thời gian. Cụ thể, chúng tôi sử dụng phiếm hàm BP86 kết hợp với bộ hàm cơ sở cc-pVTZ-pp và cc-pVTZ áp dụng lần lượt cho nguyên tử M và Cr. Nguyên tử pha tạp Cr có năm điện tử hóa trị chưa ghép cặp tương ứng với cấu hình điện tử phân lớp ngoài cùng 3d54s1. Những điện tử hóa trị này có tính linh động cao, do đó chúng dễ dàng di chuyển và hình thành đám mây điện tử tự do cho cụm nguyên tử. Ngược lại, các điện tử còn lại không tham gia vào hình thành đám mây điện tử tự do của cụm nguyên tử sẽ định xứ trên orbital d-Cr, kết quả có sự khác biệt đáng kể trong các mode dao động đặc trưng của cụm nguyên tử M13 và M12Cr. Phân tích phổ hấp thụ phân tử cho thấy không thu được tín hiệu hấp thụ đối với cụm nguyên tử Ag12Cr và Cu12Cr, trong khi Au12Cr thu được một đỉnh phổ rõ rệt tại bước sóng 1270 nm (0,976 eV). Những phát hiện này cung cấp những hiểu biết có giá trị về các đặc trưng dao động và đặc trưng quang học của cụm nguyên tử, tạo nền tảng cho các nghiên cứu lý thuyết và thực nghiệm trong tương lai. 

Từ khóa


Cụm nguyên tử kim loại; Tính chất quang; Phổ hồng ngoại; Phương pháp phiếm hàm mật độ; Quang phổ hấp thụ

Toàn văn:

PDF (English)

Tài liệu tham khảo


[1] S. Khanna and P. Jena, "Assembling crystals from clusters," Physical Review Letters, vol. 69, no. 11, 1992, Art. no. 1664.

[2] S. Khanna and P. Jena, "Atomic clusters: Building blocks for a class of solids," Physical Review B, vol. 51, no. 19, 1995, Art. no. 13705.

[3] A. C. Jr and S. Khanna, "Clusters, superatoms, and building blocks of new materials," The Journal of Physical Chemistry C, vol. 113, no. 7, pp. 2664-2675, 2009.

[4] H. Haberland, Clusters of atoms and molecules: theory, experiment, and clusters of atoms, Springer Science & Business Media, Hellmut Haberland (Ed), 2013.

[5] T. L. Ngo, T. M. Nguyen, D.D. La, M. T. Nguyen, S.T. Ngo, T. C. Ngo, V. D. Nguyen, T. T. Phung, and T. T. Nguyen, "DFT investigation of Au9M2+ nanoclusters (M= Sc-Ni): The magnetic superatomic behavior of Au9Cr2+," Chemical Physics Letter, vol. 793, 2022, Art. no. 139451.

[6] T. M. Nguyen, T. L. Ngo, T. C. Ngo, M. T. Nguyen, S. T. Ngo, T. T. Phung, V. D. Nguyen, and T. T. Nguyen, "Systematic Investigation of the Structure, Stability, and Spin Magnetic Moment of CrMn Clusters (M= Cu, Ag, Au, and n= 2–20) by DFT Calculations," ACS omega, vol. 6, no. 31, pp. 20341-20350, 2021.

[7] M. T. Nguyen, T. M. Nguyen, H. T. Pham, T. C. Ngo, and T. T. Nguyen, "Ultimate Manipulation of Magnetic Moments in the Golden Tetrahedron Au20 with a Substitutional 3d Impurity," The Journal of Physical Chemistry C, vol. 122, no. 28, pp. 16256-16264, 2018.

[8] M. T. Nguyen, T. C. Ngo, H. T. Pham, and T. T. Nguyen, "Au19M (M= Cr, Mn, and Fe) as magnetic copies of the golden pyramid," Scientific Reports, vol. 7, no. 1, 2017, Art. no. 16086.

[9] R. Xiong, D. Die, L. Xiao, Y.-G. Xu, and X.-Y. Shen, "Probing the structural, electronic, and magnetic properties of AgnV (n= 1–12) clusters," Nanoscale Research Letters, vol. 12, pp. 1-12, 2017.

[10] M. Zhang, H. Zhang, L. Zhao, Y. Li, and Y. Luo, "Low-Energy Isomer Identification, Structural Evolution, and Magnetic Properties in Manganese-Doped Gold Clusters MnAun (n= 1–16)," The Journal of Physical Chemistry A, vol. 116, no. 6, pp. 1493-1502, 2012.

[11] V. M. Medel, Arthur C. Reber, V. Chauhan, P. Sen, A. M. Köster, P. Calaminici, and S. N. Khanna, "Nature of valence transition and spin moment in AgnV+ clusters," Journal of the American Chemical Society, vol. 136, no. 23, pp. 8229-8236, 2014.

[12] Y. S. Xu, D. Die, and B. X. Zheng, "Growth pattern and electronic and magnetic properties of Cr‐doped silver clusters," Journal of Computational Chemistry, vol. 44, no. 29, pp. 2284-2293, 2023.

[13] W. Li and F. Chen, "Effect of Cu-doped site and charge on the optical and magnetic properties of 55-atom Ag cluster: A density functional theory study," Computational materials science, vol. 81, pp. 587-594, 2014.

[14] T. L. Ngo, T. M. Nguyen, D. D. La, S. T. Ngo, M. T. Nguyen, V. D. Nguyen, and T. T. Nguyen , "Exploring hydrogen adsorption on nanocluster systems: Insights from DFT calculations of Au9M2+ (M= Sc-Ni)," Chemical Physics Letter, vol. 831, 2023, Art. no. 140838.

[15] T. L. Ngo, T. M. Nguyen, T. C. Ngo, T. H. V. Phung, D. D. La, M. T. Nguyen, S. T. Ngo, and T. T. Nguyen, "Density Functional Study of Size-Dependent Hydrogen Adsorption on AgnCr (n= 1–12) Clusters," ACS omega, vol. 7, no. 42, pp. 37379-37387, 2022.

[16] M. Szalay, D. Buzsáki, J. Barabás, E. Faragó, E. Janssens, L. Nyulászi, and T. Höltzl, "Screening of transition metal doped copper clusters for CO2 activation," Physical Chemistry Chemical Physics, vol. 23, no. 38, pp. 21738-21747, 2021.

[17] W. Li, H. Feng, and R. Shang, "First Principle Study on Structural, Electronic, Magnetic, and Optical Properties of Co-Doped Middle Size Silver Clusters," Molecules, vol. 29, no. 11, 2024, Art. no. 2670.

[18] W. Ma and F. Chen, "Optical and electronic properties of Cu doped Ag clusters," Journal of alloys and compounds, vol. 541, pp. 79-83, 2012.

[19] V. Kaydashev, P. Ferrari, C. Heard, E. Janssens, R. L. Johnston, and P. Lievens, "Optical absorption of small palladium‐doped gold clusters," Particle & Particle Systems Characterization, vol. 33, no. 7, pp. 364-372, 2016.

[20] M. Frisch, G. W. Trucks, H. B. Schlegel, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, and G. A. Petersson, Gaussian 09, Revision a. 02, 200, Gaussian, Inc., Wallingford, CT, vol. 271, 2009.

[21] P. Hohenberg and W. Kohn, "Inhomogeneous electron gas," Physical review, vol. 136, no. 3B, 1964, Art. no. B864.

[22] O. Ingólfsson, U. Busolt, and K.-i. Sugawara, "Energy-resolved collision-induced dissociation of Cun+ (n= 2–9): Stability and fragmentation pathways," The Journal of Chemical Physics, vol. 112, no. 10, pp. 4613-4620, 2000.

[23] Y.-R. Luo, Comprehensive handbook of chemical bond energies. CRC press, 2007.

[24] S. F. Li, S. Zenlun, H. Shuli, X. Xinlian, F. Wang, Q. Sun, J. Yu, and Z. X. Guo, "Role of Ag doping in small transition metal clusters from first-principles simulations," The Journal of chemical physics, vol. 131, no. 18, pp. 184301-18410, 2009.

[25] T. L. Ngo, V. D. Nguyen, T. M. Nguyen, T. T. Phung, D. T. Nguyen, and T. T. Nguyen, "Insights into the structural, electronic and magnetic properties of gold clusters: Comparison between Au12Cr and Au12Mo clusters," Communications in Physics, vol. 34, no. 4, pp. 389-398, 2024.

[26] S. Bhattacharyya, T. T. Nguyen, J. D. Haeck, K. Hansen, P. Lienvens, and E. Janssens, "Mass-selected photodissociation studies of AlPbn+ clusters (n= 7–16): Evidence for the extraordinary stability of AlPb10+ and AlPb12+," Physical Review B—Condensed Matter and Materials Physics, vol. 87, no. 5, 2013, Art. no. 054103.

[27] T. M. Nguyen, S. T. Ngo, P. Lienvens, E. Janssens, and T. T. Nguyen, "Photofragmentation Patterns of Cobalt Oxide Cations ConOm+(n= 5–9, m= 4–13): From Oxygen-Deficient to Oxygen-Rich Species," The Journal of Physical Chemistry A, vol. 124, no. 37, pp. 7333 - 7339, 2020.

[28] T. T. Nguyen, E. Janssens, and P. Lienvens, "Dopant dependent stability of ConTM+ (TM= Ti, V, Cr, and Mn) clusters," Applied Physics B, vol. 114, pp. 497-502, 2014.

[29] M. J. Piotrowski, P. Piquini, and J. L. Da Silva, "Density functional theory investigation of 3d, 4d, and 5d 13-atom metal clusters," Physical Review B, vol. 81, no. 15, 2010, Art. no. 155446.

[30] C. C. Quevedo, C. E. B. Garcia, E. P. Sotelo, E. R. Chaparro, G. M. Guajardo, J. Manuel, Q. Castillo, A. L. Flores, T. Gaxiola, S. J. Castillo, A. V. Espinal, and J. L. Cabellos, "Relative abundances and enantiomerization energy of the chiral Cu13 cluster at finite temperature," Condensed Matter, vol. 2109, 2021, Art. no. 03981.

[31] C. W. Bauschlicher, S. P. Walch, and P. E. Siegbahn, "On the nature of the bonding in Cu2," The Journal of Chemical Physics, vol. 76, no. 12, pp. 6015-6017, 1982.

[32] J. Jin, M. Grellmann, and K. R. Asmis, "Nuclear quantum dynamics on the ground electronic state of neutral silver dimer 107 Ag 109 Ag probed by femtosecond NeNePo spectroscopy," Phys. Chem. Chem. Phys., vol. 25, no. 36, pp. 24313-24320, 2023.

[33] T. L. Ngo, "Research on the physical interaction between delocalized and localized electrons in Au9M2+ (M = Sc-Ni) and AgnCr (n = 2-12) alloy nanoclusters systems using density functional theory," PhD Thesis, Graduate University of Science and Technology, 2024.




DOI: https://doi.org/10.34238/tnu-jst.12674

Các bài báo tham chiếu

  • Hiện tại không có bài báo tham chiếu
Tạp chí Khoa học và Công nghệ - Đại học Thái Nguyên
Phòng 408, 409 - Tòa nhà Điều hành - Đại học Thái Nguyên
Phường Tân Thịnh - Thành phố Thái Nguyên
Điện thoại: 0208 3840 288 - E-mail: jst@tnu.edu.vn
Phát triển trên nền tảng Open Journal Systems
©2018 All Rights Reserved