ĐẶC TÍNH ĐIỆN TỬ VÀ CƠ HỌC CÓ THỂ ĐIỀU CHỈNH CỦA BCN ĐƠN LỚP DƯỚI TÁC ĐỘNG CỦA BIẾN DẠNG VÀ ĐIỆN TRƯỜNG
Thông tin bài báo
Ngày nhận bài: 01/05/25                Ngày hoàn thiện: 22/05/25                Ngày đăng: 22/05/25Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] M. Marian, D. Berman, D. Nečas, N. Emani, A. Ruggiero, and A. Rosenkranz, “Roadmap for 2D Materials in Biotribological/Biomedical Applications-A Review,” Adv. Colloid. Interf. Sci., vol. 307, Sep. 2022, doi: 10.1016/j.cis.2022.102747.
[2] P. Kumbhakar et al., “Prospective applications of two-dimensional materials beyond laboratory frontiers: A review,” iScience, vol. 26, no. 5, May 2023, Art. no. 106671, doi: 10.1016/j.isci.2023.106671.
[3] D. Akinwande et al., “A Review on Mechanics and Mechanical Properties of 2D Materials-Graphene and Beyond,” Extreme Mech Lett., vol 13, May 2017, doi: 10.1016/j.eml.2017.01.008.
[4] C. Ye and Q. Peng, “Mechanical Stabilities and Properties of Graphene-like 2D III-Nitrides: A Review,” Crystals, vol. 13, no. 1, 2023, doi: 10.3390/cryst13010012.
[5] S. Thomas, M. S. Manju, K. M. Ajith, S. U. Lee, and M. A. Zaeem, “Strain-induced work function in h-BN and BCN monolayers,” Physica E. Low Dimens. Syst. Nanostruct, vol. 123, Sep. 2020, doi: 10.1016/j.physe.2020.114180.
[6] L. Zhu et al., “Tunable electronic and optical properties of two-dimensional SnTe/InBr van der Waals heterostructures: A first-principles study,” Surfaces and Interfaces, vol. 56, Jan. 2025, doi: 10.1016/j.surfin.2024.105715.
[7] Q. Wei and X. Peng, “Superior mechanical flexibility of phosphorene and few-layer black phosphorus,” Appl. Phys. Lett., vol. 104, no. 25, Jun. 2014, doi: 10.1063/1.4885215.
[8] S. Joseph et al., “A review of the synthesis, properties, and applications of 2D transition metal dichalcogenides and their heterostructures,” Mater Chem. Phys., vol. 297, Mar. 2023, Art. no. 127332, doi: 10.1016/j.matchemphys.2023.127332.
[9] S. Ahmed and J. Yi, “Two-dimensional transition metal dichalcogenides and their charge carrier mobilities in field-effect transistors,” Nanomicro Lett., vol. 9, no. 4, pp. 1–23, Oct. 2017, doi: 10.1007/s40820-017-0152-6.
[10] L. Meng, Y. Ma, K. Si, S. Xu, J. Wang, and Y. Gong, “Recent advances of phase engineering in group VI transition metal dichalcogenides,” Tungsten, vol. 1, pp. 46–58, 2019, doi: 10.1007/s42864-019-00012-x.
[11] X. Yin et al., “Recent developments in 2D transition metal dichalcogenides: Phase transition and applications of the (quasi-)metallic phases,” Chemical Society Reviews, vol. 18, 2021, doi: 10.1039/d1cs00236h.
[12] A. A. Tedstone, D. J. Lewis, and P. O’Brien, “Synthesis, Properties, and Applications of Transition Metal-Doped Layered Transition Metal Dichalcogenides,” Chem. Mater, vol. 28, pp. 1965-1974, Apr. 2016, doi: 10.1021/acs.chemmater.6b00430.
[13] T. H. Dinh, H. L. Nguyen, and V. T. Do, “DFT Study on the Electronic and Mechanical Properties of BCN Monolayer,” Lecture Note in Networks and Systems, vol. 943, pp. 472–477, 2024, doi: 10.1007/978-3-031-62238-0_49.
[14] Z. Ma, C. Tang, and C. Shi, “A New BCN Compound with Monoclinic Symmetry: First-Principle Calculations,” Materials, vol. 15, no. 9, May 2022, doi: 10.3390/ma15093186.
[15] Y. Lu, Y. Yu, X. Zhu, and M. Wang, “Two predicted two-dimensional BCN structures: A first-principles study,” Physica. E. Low Dimens. Syst. Nanostruct., vol. 125, Jan. 2021, doi: 10.1016/j.physe.2020.114413.
[16] V. K. Yadav, S. H. Mir, and J. K. Singh, “Density Functional Theory Study of Aspirin Adsorption on BCN Sheets and their Hydrogen Evolution Reaction Activity: a Comparative Study with Graphene and Hexagonal Boron Nitride,” ChemPhysChem, vol. 20, no. 5, pp. 687–694, Mar. 2019, doi: 10.1002/cphc.201801173.
[17] J. Wang and X. Luo, “Theoretical Investigation of the BCN Monolayer and Their Derivatives for Metal-free CO2 Photocatalysis, Capture, and Utilization,” ACS Omega, vol. 9, 2024, doi: 10.1021/acsomega.3c07795.
[18] R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford: Oxford University Press, 1989.
[19] R. M. Dreizler and E. K. U. Gross, Density Functional Theory, Berlin: Springer, 1990.
[20] P. Giannozzi et al., “QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials,” Journal of Physics Condensed Matter, vol. 21, no. 39, 2009, doi: 10.1088/0953-8984/21/39/395502.
[21] D. Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism,” Phys. Rev. B, vol. 41, Apr. 1990, doi: 10.1103/PhysRevB.41.7892.
[22] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett., vol. 77, Oct. 1996, doi: 10.1103/PhysRevLett.77.3865.
[23] H. J. Monkhorst and J. D. Pack, “Special points for Brillonin-zone integrations,” Phys. Rev. B, vol. 13, Jun. 1976, doi: 10.1103/PhysRevB.13.5188.
[24] A. D. Corso, “Clean Ir(111) and Pt(111) electronic surface states: A first-principle fully relativistic investigation,” Surf. Sci., vol. 637–638, pp. 106–115, Jul. 2015, doi: 10.1016/j.susc.2015.03.013.
[25] A. Bafekry et al., “A novel two-dimensional boron-carbon-nitride (BCN) monolayer: A first-principles insight,” J. Appl. Phys., vol. 130, no. 11, Sep. 2021, doi: 10.1063/5.0062323.
[26] F. Mouhat and F. X. Coudert, “Necessary and sufficient elastic stability conditions in various crystal systems,” Phys. Rev. B Condens. Matter. Mater. Phys., vol. 90, no. 22, Dec. 2014, doi: 10.1103/PhysRevB.90.224104.
DOI: https://doi.org/10.34238/tnu-jst.12710
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu