NGHIÊN CỨU NÂNG CAO NHẬN DẠNG CẢM XÚC TIẾNG VIỆT: PHƯƠNG PHÁP DỰA TRÊN PHOBERT PHỤC VỤ TƯƠNG TÁC HIỆU QUẢ
Thông tin bài báo
Ngày nhận bài: 26/05/25                Ngày hoàn thiện: 29/06/25                Ngày đăng: 29/06/25Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] M. Dhuheir, A. Albaseer, E. Baccour, A. Erbad, M. Abdallah, and M. Hamdi, “Emotion recognition for healthcare surveillance systems using neural networks: A survey,” in Proceedings of the 2021 International Wireless Communications and Mobile Computing Conference (IWCMC), Harbin City, China, 2021, pp. 681–687, doi: 10.1109/IWCMC51323.2021.9498861.
[2] X. T. Le, T. T. Dao, V. L. Trinh, and H. Q. Nguyen, “Speech Emotions and Statistical Analysis for Vietnamese Emotion Corpus,” Journal on Information Technologies & Communications, vol. V-1, no. 35, pp. 86-98, 2022, doi: 10.32913/mic-ict-research-vn.v1.n35.233.
[3] V. A. Ho, D. H.-C. Nguyen, D. H. Nguyen, L. T.-V. Pham, D.-V. Nguyen, K. V. Nguyen, and N. L.-T. Nguyen, “Emotion Recognition for Vietnamese Social Media Text,” CoRR, 2019, doi: 10.48550/arXiv.1911.09339.
[4] D. Q. Nguyen and A. T. Nguyen, “PhoBERT: Pre-trained language models for Vietnamese,” in Findings of the Association for Computational Linguistics: EMNLP 2020, Online: Association for Computational Linguistics, Nov. 2020, pp. 1037–1042, doi: 10.18653/v1/2020.findings-emnlp.92.
[5] A. F. A. Nasir, E. Nee, C. S. Choong, A. S. A. Ghani, A. P. P. A. Majeed, A. Adam, and M. Furqan, “Text-based emotion prediction system using machine learning approach,” in IOP Conference Series: Materials Science and Engineering, vol. 769, Jun. 2020, Art. no. 012022.
[6] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neural networks,” in Proceedings of the 30th International Conference on Machine Learning (ICML), vol. 28, no. 3, pp. 1310–1318, 2013.
[7] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradient descent is difficult,” in IEEE Transactions on Neural Networks, vol. 5, no. 2, pp. 157-166, March 1994, doi: 10.1109/72.279181.
[8] S.-H. Noh, “Analysis of Gradient Vanishing of RNNs and Performance Comparison,” Information, vol. 12, vol. 12, no. 11, 2021, Art. no. 442, doi: 10.3390/info12110442.
[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,” in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), Minneapolis, MN, USA, Jun. 2019, pp. 4171–4186, doi: 10.18653/v1/N19-1423.
[10] M. T. Ngo, B. H. Ngo, and V. V. Stuchilin, “Fine-tuned PhoBERT for sentiment analysis of Vietnamese phone reviews,” CTU Journal of Innovation & Sustainable Development, vol. 16, no. Special issue: ISDS, pp. 52-57, 2024.
[11] H. T. T. Thieu, “Challenges in Classification of Vietnamese Sentiment,” International Journal of Scientific and Technical Research in Engineering (IJSTRE), vol. 6, no. 5, pp. 1–6, 2021.
[12] N. D. Q. Anh, M.-H. Ha, Q. C. Nguyen, T. H. T. Nguyen, Q. Vu, D. X. Minh-Duc, D.-C. Nguyen, and T. K. Dinh, "VNEMOS: Vietnamese Speech Emotion Inference Using Deep Neural Networks," in 2024 9th International Conference on Integrated Circuits, Design, and Verification (ICDV), Hanoi, Vietnam, 2024, pp. 97-101, doi: 10.1109/ICDV61346.2024.10616411.
[13] undertheseanlp, “undertheseanlp/underthesea: Underthesea - Vietnamese NLP Toolkit,” 2017, [Online]. Available: https://github.com/undertheseanlp/underthesea. [Accessed 11 May 2025].
[14] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3, pp. 273-297, 1995.
[15] S. Robertson, “Understanding inverse document frequency: on theoretical arguments for IDF,” Journal of Documentation, vol. 60, no. 5, pp. 503-520, 2004.
[16] N. S. M. Nafis and S. Awang, “An Enhanced Hybrid Feature Selection Technique Using Term Frequency-Inverse Document Frequency and Support Vector Machine-Recursive Feature Elimination for Sentiment Classification,” IEEE Access, vol. 9, pp. 52177-52192, 2021.
[17] E. Gkintoni, A. Aroutzidis, H. Antonopoulou, and C. Halkiopoulos, “From Neural Networks to Emotional Networks: A Systematic Review of EEG-Based Emotion Recognition in Cognitive Neuroscience and Real-World Applications,” Brain Sciences, vol. 15, no. 3, 2025, Art. no. 220.
[18] Z. Hameed and B. Garcia-Zapirain, “Sentiment Classification Using a Single-Layered BiLSTM Model,” IEEE Access, vol. 8, pp. 73992-74001, 2020.
[19] M. Samaneh, P. David, A. Olayinka, P. Christian, M. Farhaan, M. Shilpa, and S. Sandra, “Automatic Speech Emotion Recognition Using Machine Learning: Digital Transformation of Mental Health,” in PACIS 2022 Proceedings, Chiang Mai, Thailand, 2022, Art. no. 45.
[20] M. Awatef, B. Hayet, and L. Zied, “Multimodal emotion recognition: Integrating speech and text for improved valence, arousal, and dominance prediction,” Annals of Telecommunications., vol. 80, no. 5, pp. 401-415, 2025.
DOI: https://doi.org/10.34238/tnu-jst.12889
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu