ĐẶC ĐIỂM HỆ GENE LỤC LẠP VÀ VÙNG GENE ndhF CỦA MỘT SỐ LOÀI HOYA
Thông tin bài báo
Ngày nhận bài: 10/08/25                Ngày hoàn thiện: 14/11/25                Ngày đăng: 14/11/25Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] V. Ravi, J. P. Khurana, A. K. Tyagi, and P. Khurana, “An Update on Chloroplast Genomes,” Plant Syst Evol, vol. 271, pp. 101–122, 2008, doi: 10.1007/s00606-007-0608-0.
[2] H. Daniell, C. S. Lin, M. Yu, and W. J. Chang, “Chloroplast genomes: diversity, evolution, and applications in genetic engineering,” Genome Biol, vol. 17, no. 134, 2016, doi: 10.1186/s13059-016-1004-2.
[3] A. Lamb, M. Rodda, L. Gokulsing, S. Bosuang, and S. Rahayu, A Guide to Hoyas of Borneo, Borneo: Natural History Publications, 2016.
[4] Royal Botanic Garden-KEW, “Hoya R.Br.,”. [Online]. Available: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:60437256-2. [Accessed August 08, 2025].
[5] W. O. Odago, E. N. Waswa, C. Nanjala, E. S. Mutinda, V. O. Wanga, E. M. Mkala, M. A. Oulo, Y. Wang, C. F. Zhang, G. W. Hu, and Q. F. Wang, “Analysis of the Complete Plastomes of 31 Species of Hoya Group: Insights Into Their Comparative Genomics and Phylogenetic Relationships,” Frontiers in plant science, vol. 12, 2022, Art. no. 814833, doi: 10.3389/fpls.2021.814833.
[6] T. Shikanai, “Chloroplast NDH: A different enzyme with a structure similar to that of respiratory NADH dehydrogenase,” Biochim Biophys Acta, vol. 1857, no. 7, pp. 1015-1022, 2016, doi: 10.1016/j.bbabio.2015.10.013.
[7] Y. Wang, S. Wang, Y. Liu, Q. Yuan, J. Sun, and L. Guo, “Chloroplast genome variation and phylogenetic relationships of Atractylodes species,” BMC Genomics, vol. 22, no. 103, 2021, doi: 10.1186/s12864-021-07394-8.
[8] M. Martin and B. Sabater, “Plastid ndh genes in plant evolution,” Plant Physiol Biochem., vol. 48, no. 8, pp. 636-645, 2010, doi: 10.1016/j.plaphy.2010.04.009.
[9] S.R. Downie and R. K. Jansen, “A comparative analysis of whole plastid genomes from the Apiales: Expansions and contraction of the inverted repeat, mitochondrial to plastid transfer of DNA, and identification of highly divergent noncoding regions,” Systematic Botany vol. 40, no.1, pp. 336-351, 2015, doi: 10.1600/036364415X686620.
[10] S. Wicke, G. M. Schneeweiss, C. W. dePamphilis, K. F. Müller, and D. Quandt, “The evolution of the plastid chromosome in land plants: gene content, gene order, gene function,” Plant Molecular Biology, vol. 76, no. 3-5, pp. 273–297, 2011, doi: 10.1007/s11103-011-9762-4.
[11] S. R. Lee, A. Oh, and D. C. Son, “Characterization, comparison, and phylogenetic analyses of chloroplast genomes of Euphorbia species,” Sci Rep., vol. 14, 2024, Art. no. 15352, doi: 10.1038/s41598-024-66102-0.
[12] K. Tamura, G. Stecher, and S. Kumar, “MEGA12: Molecular Evolutionary Genetics Analysis Version 12,” Mol Biol Evol, vol. 38, pp. 3022-3027, 2021, doi: 10.1093/molbev/msab120.
[13] K. Tamura and M. Nei, “Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees,” Mol Biol Evol, vol. 10, pp. 512-526, 1993, doi: 10.1093/oxfordjournals.molbev.a040023.
[14] J. Felsenstein, “Confidence limits on phylogenies: An approach using the bootstrap,” Evolution, vol. 39, pp. 783-791, 1985, doi: 10.1111/j.1558-5646.1985.tb00420.x.
[15] X. F. Wei, S. J. Zeng, G. Q. Zhang, G. D. Tang, and J. X. Huang, “Complete plastome sequence of Hoya carnosa (L. f.) R. Br. (Apocynaceae),” Mitochondrial DNA. Part B, Resources, vol. 5, no. 1, pp. 522–523, 2020, doi: 10.1080/23802359.2019.1710596.DOI: https://doi.org/10.34238/tnu-jst.13396
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu





