TIỀM NĂNG MANG THUỐC VÀ ĐẶC TÍNH CỦA MẠNG LƯỚI 3D NANO-CELLULOSE ĐƯỢC SẢN XUẤT TỪ ACETOBACTER XYLINUM TRONG DỊCH CHÈ XANH LÊN MEN | Thành | TNU Journal of Science and Technology

TIỀM NĂNG MANG THUỐC VÀ ĐẶC TÍNH CỦA MẠNG LƯỚI 3D NANO-CELLULOSE ĐƯỢC SẢN XUẤT TỪ ACETOBACTER XYLINUM TRONG DỊCH CHÈ XANH LÊN MEN

Thông tin bài báo

Ngày nhận bài: 06/06/19                Ngày hoàn thiện: 10/07/19                Ngày đăng: 09/09/19

Các tác giả

Nguyễn Xuân Thành Email to author, Viện Nghiên cứu Khoa học và Ứng dụng - Trường Đại học Sư phạm Hà Nội 2

Tóm tắt


Vật liệu cấu trúc mạng lưới 3D nano-cellulose (M3DC) có thể được tạo ra từ Acetobacter xylinum trong dịch chè xanh lên men. M3DC gồm các sợi với kích thước nano tạo mạng lưới có khả năng nạp thuốc nhằm tạo hệ trị liệu giải phóng kéo dài để cải thiện sinh khả dụng của thuốc. Ranitidine là thuốc đường tiêu hóa với sinh khả dụng thấp (50%). Trong nghiên cứu, M3DC được sản xuất từ môi trường chuẩn (MC), nước dừa (MD) và nước vo gạo (MG). M3DC thu được từ MD và MG có kích thước và các đặc tính tương đương M3DC thu được từ MC và có thể chế tạo được M3DC có độ dày và kích thước theo ý muốn ở cả 3 loại môi trường. Các M3DC được hấp thụ ranitidine trong điều kiện tối ưu không có sự khác nhau có ý nghĩa thống kê (p > 0,05) về lượng thuốc nạp vào (111,6-116,7 mg) và hiệu suất nạp thuốc (61-63%). Đặc tính của M3DC được xác định bởi kính hiển vi điện tử quét phát xạ trường (FE-SEM) và máy đo phổ hồng ngoại biến đổi Fourier (FTIR). Khảo sát cấu trúc M3DC bằng SEM cho thấy M3DC được nuôi cấy trong MC và MD, các sợi cellulose có độ cấu trúc ổn định, hầu như không có sự thay đổi trong cấu trúc khi được nạp thuốc. Kết quả nghiên cứu cho thấy vật liệu M3DC-MC và M3DC-MD có tiềm năng sử dụng làm chất mang để sản xuất hệ dẫn thuốc.

Từ khóa


Acetobacter xylinum (A. xylinum); dẫn thuốc; nạp thuốc; ranitidine; dịch chè xanh lên men; mạng lưới 3D nano-cellulose (M3DC)

Toàn văn:

PDF (English)

Tài liệu tham khảo


[1]. M. C. I. M. Amin, A. Abadi, N. Ahmad, H. Katas, J. A. Jamal, "Bacterial cellulose film coating as drug delivery system: physicochemical, thermal and drug release properties", Sain Malaysiana, Vol. 41, No. 5, pp. 561-568, 2012.

[2]. L. Huang, X. Chen, Nguyen Xuan Thanh, H. Tang, L. Zhang, G. Yang, “Nano-cellulose 3D-networks as controlled-release drug carriers”, Journal of Materials Chemistry B (Materials for biology and medicine), Vol. 1, pp. 2976-2984, 2013.

[3]. V. S. Mastiholimath, P. M. Dandagi, A. P. Gadad, R. Mathews, A. R. Kulkarni, “In vitro and in vivo evaluation of ranitidine hydrochloride ethyl cellulose floating microparticles”, J. Microencapsul., Vol. 25, No. 5, pp. 307-314, 2008.

[4]. H. Chavda, C. Patel, “Chitosan superporous hydrogel composite-based floating drug delivery system: A newer formulation approach”, J. Pharm Bioallied Sci., Vol. 2, No. 2, pp. 124-131, 2010.

[5]. V. C. Hitesh, N. P. Chhaganbhai, “A newer formulation approach: Superporous hydrogel composite-based bioadhesive drug-delivery system”, Asian Journal of Pharmaceutical Sciences, Vol. 5, No. 6, pp. 239-250, 2010.

[6]. G. V. Joshi, B. D. Kevadiya, H. C. Bajaj, “Controlled release formulation of ranitidine-containing montmorillonite and Eudragit E-100”, Drug Dev. Ind. Pharm., Vol. 36, No. 9, pp. 1046-1053, 2010.

[7]. A. Bani-Jaber, I. Hamdan, M. Alkawareek, “The synthesis and characterization of fatty acid salts of chitosan as novel matrices for prolonged intragastric drug delivery”, Arch Pharm Res., Vol. 35, No. 7, pp. 1159-1168, 2012.

[8]. B. Singha, V. Sharmaa, A. Dhiman, M. Devi, “Design of Aloe Vera-Alginate Gastroretentive Drug Delivery System to Improve the Pharmacotherapy”, Polymer-Plastics Technology and Engineering, Vol. 51, No. 12, pp. 1303-1314, 2012.

[9]. B. Arun, Y. Rakesh, P. Satyam, Y. Khushbu, S. Shyam, P. S. Islam, “Drug Release Kinetics of Gastroretentive Rantidine Hydrochloride (RHCL)”, Int. J. Curr. Trend. Pharmacobiol. Med. Sci., Vol. 1, No. 2, pp. 1-12, 2016.

[10]. C. J. Greenwalt, K. H. Steinkraus, R. A. Ledford, “Kombucha, the fermented tea: microbiology, composition, and claimed health effects”, Journal of food protection, Vol. 63, No. 7, pp. 976-981, 2000.

[11]. Nguyen Xuan Thanh, "Isolation of Acetobacter xylinum from Kombucha and application of cellulose material produced by bacteria from some culture media for drug carrier", International Journal of Science and Research (IJSR), Vol. 8, No. 1, pp. 1044-1049, 2019.

[12]. S. Hestrin, M. Schramm, “Synthesis of cellulose by Acetobacter xylinum, 2. Preparation of freeze-dried cells capable of polymerizing glucose tocellulose”, Biochem J., Vol. 58, No. 2, pp. 345-352, 1954.

[13]. Nguyen Thi Diem Chi, Ho Thi Yen Linh, Nguyen Van Thanh, “Study on the culture of Acetobacter xylinum for preparation of bio-membrane used for treatment of burn and skin trauma”, Journal of Medicine Sciences of HCM city, Vol. 6, No. 1, pp. 139-141, 2002.

[14]. Phan Thi Huyen Vy, Bui Minh Thy, Phung Thi Kim Hue, Nguyen Xuan Thanh, Trieu Nguyen Trung, “Optimization of famotidine loaded efficiency for bacterial cellulose material fermented from green tea by response surface methodology and Box-Behnken model”, Pharmaceutical Journal, Vol. 501, No. 58, pp. 3-6, 2018.

[15]. Nguyen Thuy Huong, Phạm Thanh Ho, “Selection of Acetobacter xylinum suitable for use in large scale bacterial cellulose production”, Journal of Genetics & Applied, Vol. 3, pp. 49-54, 2003.

[16]. Huynh Thi Ngoc Lan, Nguyen Van Thanh, “Study on characteristics of bacterial cellulose from Acetobacter xylinum used as burnishing membrane”, Pharmaceutical Journal, Vol. 361, pp. 18-20, 2006.

[17]. Đinh Thi Kim Nhung, Nguyen Thị Thuy Van, Tran Nhu Quynh, “Research on Acetobacter xylinum producing bacterial cellulose for therapeutic purpose of burn wound treatment”, Journal of Science and Technology, Vol. 50, No. 4, pp. 453-462, 2012.

[18]. J. B. P. Ricardo, A. A. P. M. Paula, P. N. Carlos, T. Tito, D. Sara, S. Patrizia, “Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers”, Acta Biomater, 5, pp. 2279-2289, 2009.

[19]. B. Kuswandi, Jayus, T. S. Larasati, A. Abdullah, L. Y. Heng, “Real-time monitoring of shrimp spoilage using on-package sticker sensor based on natural dye of curcumin”, Food Analytical Methods, Vol. 5, No. 4, pp. 881-889, 2012.

[20]. Nguyen Xuan Thanh, “Study of some properties of curcumin loaded 3D-nano-cellulose networks produced by Acetobacter xylinum”, Journal of Science and Technology (Agriculture – Forestry – Medicine & Pharmacy) – Thai Nguyen University, Vol. 184, No. 08, pp. 83-88, 2018.

[21]. Nguyen Xuan Thanh, “Evaluation of the in vivo bioavailability of famotidine loaded 3D-nano-cellulose networks produced by Acetobacter xylinum in some culture media”, VNU Journal of Science: Medical and Pharmaceutical Sciences, Vol. 34, No. 2, pp. 1-7, 2018.


Các bài báo tham chiếu

  • Hiện tại không có bài báo tham chiếu
Tạp chí Khoa học và Công nghệ - Đại học Thái Nguyên
Phòng 408, 409 - Tòa nhà Điều hành - Đại học Thái Nguyên
Phường Tân Thịnh - Thành phố Thái Nguyên
Điện thoại: 0208 3840 288 - E-mail: jst@tnu.edu.vn
Phát triển trên nền tảng Open Journal Systems
©2018 All Rights Reserved