NGHIÊN CỨU PHƯƠNG PHÁP CẢI TIẾN CHIẾN LƯỢC CHỌN LỌC TỰ NHIÊN TRONG GIẢI THUẬT SEAMO2 ĐỂ GIẢI CÁC BÀI TOÁN TỐI ƯU ĐA MỤC TIÊU
Thông tin bài báo
Ngày nhận bài: 17/09/20                Ngày hoàn thiện: 26/08/22                Ngày đăng: 26/08/22Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] H. T. Tran, “Genetic algorithm for multi-objective problem,” Master Thesis, VNU University of Engineering and Technology, Viet Nam, 2014.
[2] D. T. Nguyen, Artificial Intelligence - Evolutionary Programming: Data Structures + Genetic Algorithms = Evolutionary Programs, Viet Nam Education Publisher, 2015.
[3] S. F. Adra and P. J. Fleming, “Diversity management in evolutionary many-objective optimization,” IEEE Transactions on Evolutionary Computation, vol. 15, no. 2, pp. 183–195, 2011.
[4] H. E. Aguirre, A. Liefooghe, S. Verel, and K. Tannaka, “A study on population size and selection lapse in many-objective optimization,” in Proceedings of the 2013 IEEE Congress on Evolutionary Computation (CEC’13), IEEE, Los Alamitos, CA, 2013, pp. 1507–1514.
[5] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” Evolutionary Computation IEEE Transactions on, vol. 6, no. 2, pp. 182-197, 2002.
[6] M. Asafuddoula, T. Ray, and R. Sarker, “A decomposition based evolutionary algorithm for manyobjective optimization with systematic sampling and adaptive epsilon control,” in Evolutionary Multi-Criterion Optimization, Springer, 2013, pp. 413–427.
[7] R. Landa, C. A. Coello, and G. T. Pulido, “Goal-constraint: Incorporating preferences throughan evolutionary ε-constraint based method,” in Proceedings of the 2013 IEEE Congress on EvolutionaryComputation (CEC’13), IEEE, Los Alamitos, CA, 2013, pp. 741–747.
[8] N. C. Yang and D. Mehmood, “Multi-Objective Bee Swarm Optimization Algorithm with Minimum Manhattan Distance for Passive Power Filter Optimization Problems,” Mathematics – MDPI, vol. 10, 2022, doi: 10.3390/math10010133.
[9] G. Acampora, F. Herrenra, G. Tortora, and A. Vitiello, “A multi-objective evolutionary approach to training set selection for support vector machine,” Knowl Based Syst., vol. 147, pp. 94–108, 2018.
[10] A. K. Alok, S. Saha and A. Ekbal, “A new semi-supervised clustering technique using multi-objective optimization,” Appl. Intell, vol. 43, no.3, pp. 633–661, 2015, doi: 10.1007/s10489-015-0656-z5.
[11] I. Aydin, M. Karaköse, and E. Akin, “A multi-objective artificial immune algorithm for parameteroptimization in support vector machine,” Appl. Soft Comput., vol.11, no.1, pp. 120–129, 2011, doi:10.1016/j.asoc.2009.11.003.
[12] V. Beiranvand, M. M. Kashani, and A. A. Bakar, “Multi-objective PSO algorithm formining numerical association rules without a priori discretization,” Expert Syst. Appl, vol. 41, no. 9, pp. 4259–4273, 2014.
[13] A. Cano, K. Cios, and S. Ventura, “Multi-objective genetic programming for feature extractionand data visualization,” Soft. Comput., vol. 21, no. 8, pp. 2069–2089, 2017.
[14] J. Alcal´a-Fdez, A. Fern´andez, J. Luengo, J. Derrac, S. Garc´ıa, L. S´anchez, and F. Herrera “KEEL Data-Mining Software Tool:Data Set Repository, Integration of Algorithms and ExperimentalAnalysis Framework,” Journal of Multiple-Valued Logic and Soft Computing, vol. 17, pp.255–287, 2011.
[15] S. H. Bae, J. Y. Choi, J. Qiu, and G. C. Fox, “Dimension reductionand visualization of large high-dimensional data via interpolation,” in Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing, Chicago, Illinois, USA, June 21-25, 2010, pp. 203–214.
DOI: https://doi.org/10.34238/tnu-jst.3617
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu