MÔ PHỎNG HỆ THỐNG LÀM LẠNH HẤP PHỤ SỬ DỤNG NĂNG LƯỢNG TÁI TẠO | Quang | TNU Journal of Science and Technology

MÔ PHỎNG HỆ THỐNG LÀM LẠNH HẤP PHỤ SỬ DỤNG NĂNG LƯỢNG TÁI TẠO

Thông tin bài báo

Ngày nhận bài: 06/01/21                Ngày hoàn thiện: 12/03/21                Ngày đăng: 04/05/21

Các tác giả

1. Dương Xuân Quang Email to author, Trường Đại học Hàng hải Việt Nam
2. Thẩm Bội Châu, Trường Đại học Hàng hải Việt Nam

Tóm tắt


Bài báo giới thiệu mô hình một hệ thống làm lạnh thay thế có thể vận hành được bởi nguồn nhiệt thải công nghiệp hoặc các nguồn năng lượng tái tạo như năng lượng mặt trời. Dựa trên việc mô phỏng nhiệt động lực học một hệ thống làm lạnh hấp phụ sử dụng cặp công chất silica gel/nước nghiên cứu đã chỉ ra sự phụ thuộc của hiệu suất công tác vào nhiệt độ của nguồn nhiệt cấp. Kết quả nghiên cứu đã chỉ ra rằng, nguồn nhiệt cung cấp cho hệ thống hoạt động cần được đảm bảo ổn định ở nhiệt độ khoảng 80 ℃, nhiệt độ nguồn lạnh khoảng 30 ℃. Ở điều kiện hoạt động như vậy, nhiệt độ trung bình của nước lạnh tạo ra đạt khoảng 10 ℃, công suất làm lạnh đơn vị (SCP) đạt khoảng 268,2 W/kg silica gel, và hệ số làm lạnh (COP) đạt khoảng 0,45.


Từ khóa


Điều hòa không khí; Làm lạnh hấp phụ; Năng lượng tái tạo; Mô phỏng; COP

Toàn văn:

PDF

Tài liệu tham khảo


[1] Vietnam Electricity (EVN), “Annual Report,” 2018. [Online]. Available: https://www.evn.com.vn/ userfile/User/tcdl/files/2019/8/EVNAnnualReport2018(1).pdf. [Accessed Jan. 12, 2021].

[2] R. Wang and R. Oliveira, “Adsorption refrigeration—An efficient way to make good use of waste heat and solar energy☆,” Prog. Energy Combust. Sci., vol. 32, no. 4, pp. 424-458, 2006, doi: 10.1016/j.pecs.2006.01.002.

[3] F. Meunier, “Solid sorption heat powered cycles for cooling and heat pumping applications,” Appl. Therm. Eng., vol. 18, no. 9-10, pp. 715-729, Sep. 1998, doi: 10.1016/S1359-4311(97)00122-1.

[4] B. B. Saha, E. C. Boelman, and T. Kashiwagi, “Computational analysis of an advanced adsorption-refrigeration cycle,” Energy, vol. 20, no. 10, pp. 983-994, Oct. 1995, doi: 10.1016/0360-5442(95)00047-K.

[5] K. E. N’Tsoukpoe, H. Liu, N. Le Pierrès, and L. Luo, “A review on long-term sorption solar energy storage,” Renew. Sustain. Energy Rev., vol. 13, no. 9, pp. 2385-2396, Dec. 2009, doi: 10.1016/j.rser.2009.05.008.

[6] P. Goyal, P. Baredar, A. Mittal, and A. R. Siddiqui, “Adsorption refrigeration technology - An overview of theory and its solar energy applications,” Renewable and Sustainable Energy Reviews, vol. 53. pp. 1389-1410, 2016, doi: 10.1016/j.rser.2015.09.027.

[7] E. Hastürk, S. J. Ernst, and C. Janiak, “Recent advances in adsorption heat transformation focusing on the development of adsorbent materials,” Current Opinion in Chemical Engineering, vol. 24, pp. 26-36, 2019, doi: 10.1016/j.coche.2018.12.011.

[8] A. Sapienza, G. Gullì, L. Calabrese, V. Palomba, A. Frazzica, V. Brancato, D. La Rosa, S. Vasta, A. Freni, and L. Bonaccorsi, “An innovative adsorptive chiller prototype based on 3 hybrid coated/granular adsorbers,” Appl. Energy, vol. 179, pp. 929-938, Oct. 2016, doi: 10.1016/j.apenergy.2016.07.056.

[9] G. Engel, “Sorption thermal energy storage: Hybrid coating/granules adsorber design and hybrid TCM/PCM operation,” Energy Convers. Manag., vol. 184, pp. 466-474, 2019, doi: 10.1016/j.enconman.2019.01.071.

[10] X. Q. Duong, N. V. Cao, W. S. Lee, and J. D. Chung, “Module integration in an adsorption cooling system,” Appl. Therm. Eng., vol. 155, pp. 508-514, 2019, doi: 10.1016/j.applthermaleng.2019.03.152.

[11] B. B. Saha, E. C. Boelman, and T. Kashiwagi, “Computer simulation of a silica gel-water adsorption refrigeration cycle - the influence of operating conditions on cooling output and COP,” ASHRAE Transactions, vol. 101, no. Pt 2, pp. 348-357, 1995.

[12] H. T. Chua, K. C. Ng, A. Malek, T. Kashiwagi, A. Akisawa, and B. B. Saha, “Modeling the performance of two-bed, silica gel-water adsorption chillers,” Int. J. Refrig., vol. 22, no. 3, pp. 194-204, 1999, doi: 10.1016/S0140-7007(98)00063-2.

[13] B. B. Saha, S. Koyama, T. Kashiwagi, A. Akisawa, K. C. Ng, and H. T. Chua, “Waste heat driven dual-mode, multi-stage, multi-bed regenerative adsorption system,” Int. J. Refrig., vol. 26, no. 7, pp. 749-757, Nov. 2003, doi: 10.1016/S0140-7007(03)00074-4.

[14] B. B. Saha, A. Akisawa, and T. Kashiwagi, “Solar/waste heat driven two-stage adsorption chiller: the prototype,” Renew. Energy, vol. 23, no. 1, pp. 93-101, May 2001, doi: 10.1016/S0960-1481(00)00107-5.

[15] M. J. Pons and F. Poyelle, “Adsorptive machines with advanced cycles for heat pumping or cooling applications,” Int. J. Refrig., vol. 22, no. 1, pp. 27-37, 1999, doi: 10.1016/S0140-7007(97)00042-X.

[16] Q. Pan, R. Wang, N. Vorayos, and T. Kiatsiriroat, “A novel adsorption heat pump cycle: Cascaded mass recovery cycle,” Int. J. Refrig., vol. 95, pp. 21-27, 2018, doi: 10.1016/j.ijrefrig.2018.08.004.

[17] X. Q. Duong, N. V. Cao, S. W. Hong, S. H. Ahn, and J. D. Chung, “Numerical Study on the Combined Heat and Mass Recovery Adsorption Cooling Cycle,” Energy Technol., vol. 6, no. 2, pp. 296-305, 2018, doi: 10.1002/ente.201700417.




DOI: https://doi.org/10.34238/tnu-jst.3886

Các bài báo tham chiếu

  • Hiện tại không có bài báo tham chiếu
Tạp chí Khoa học và Công nghệ - Đại học Thái Nguyên
Phòng 408, 409 - Tòa nhà Điều hành - Đại học Thái Nguyên
Phường Tân Thịnh - Thành phố Thái Nguyên
Điện thoại: 0208 3840 288 - E-mail: jst@tnu.edu.vn
Phát triển trên nền tảng Open Journal Systems
©2018 All Rights Reserved