NGHIÊN CỨU SỰ TƯƠNG QUAN GIỮA HÀM PHÂN BỐ XUYÊN TÂM VÀ PHÂN BỐ GÓC LIÊN KẾT TRONG HỆ Mg2SiO4 RẮN
Thông tin bài báo
Ngày nhận bài: 26/01/21                Ngày hoàn thiện: 28/04/21                Ngày đăng: 04/05/21Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] B. B. Karki and L. P. Stixrude, “Viscosity of MgSiO3 liquid at Earth's mantle conditions: implications for an early magma ocean,” Science, vol. 328, no. 5979, pp. 740-742, 2010.
[2] T. Sakai et al., Experimental and theoretical thermal equations of state of MgSiO3 post-perovskite at multi-megabar pressures,” Sci Rep, vol. 6, no. 22652, pp. 1-8, 2016.
[3] N. Tomioka and T. Okuchi. A new high-pressure form of Mg2SiO4 highlighting diffusion less phase transitions of olivine,” Sci Rep, vol. 7, no. 1, pp. 1-9, 2017,
[4] G. Mountjoy, B. M. Al-Hasni, and C. Storey, “Structural organisation in oxide glasses from molecular dynamics modelling,” J. Non-Cryst. Solids, vol. 357, pp. 2522-2529, 2011.
[5] A. Pedone, G. Malavasi, M. C. Menziani, U. Segre, and A. N. Cormack, “Role of Magnesium in Soda-Lime Glasses: Insight into Structural, Transport, and Mechanical Properties through Computer Simulation,” J. Phys. Chem. C, vol. 112, no. 29, pp. 11034-11041, 2008.
[6] C. -C. Lina, S. -F. Chenb, L. -G. Liua, and C. -C. Lia, “An ion structure and elasticity of Na2O–MgO–SiO2 glasses,” J. Non-Crystalline Solids, vol. 353, no. 4, pp. 413-425, 2007.
[7] L. Cormier and G. J. Cuello, “Mg coordination in a MgSiO3 glass using neutron diffraction coupled with isotopic substitution,” Phys. Rev. B, vol. 83, no 22, 224204, 2011.
[8] M. C. Wilding, C. J. Benmore, J. A. Tangeman, and S. Sampath, “Coordination changes in magnesium silicate glasses,” Europhys. Lett., vol. 67, pp. 212-218, 2004.
[9] T. Taniguchi, M. Okuno, and T. Matsumoto, “X-ray diffraction and EXAFS studies of silicate glasses containing Mg, Ca and Ba atoms,” J. Non-Cryst. Solids, vol. 211, 56, 1997.
[10] Y. Matsui and K. Kawamura, “Instantaneous structure of an MgSiO3 melt simulated by molecular dynamics,” Nature, vol. 285, pp. 648-649, 1980.
[11] J. D. Kubicki and A. C. Lasaga, “Molecular dynamics simulation of pressure and temperature effects on MgSiO3 and Mg2SiO4 melts and glasses,” Phys. Chem. Miner., vol. 17, pp. 661-673, 1991.
[12] L. T. San, N. V. Hong, T. Iitaka, and P. K. Hung, “Structural organization, micro-phase separation and polyamorphism of liquid MgSiO3 under compression,” Eur. Phys. J. B, vol. 89, no 3. pp. 1-10, 2016.
[13] F. J. Spera, M. S. Ghiorso, and D. Nevins, “Structure, thermodynamic and transport properties of liquid MgSiO3: Comparison of molecular models and laboratory results,” Geochimica et Cosmochimica Acta, vol. 75, pp. 1272-1296, 2011.
[14] G. B. Martin, F. J. Spera, M. S. GhiorSo, and N. Nevins, “Structure, thermodynamic and transport properties of liquid MgSiO3: Comparison of molecular models and laboratory results,” American Mineralogist, vol. 94, pp. 693-703, 2009.
[15] S.L. Chaplot and N. Choudhury, “Molecular dynamics simulation of seismic discontinuities and phase transitions of MgSiO3 from 4 to 6-coordinated silicate via a novel 5-coordinated phase,” American Mineralogist, vol. 86, pp. 752-761, 2001.
[16] T. N. Nguyen, T. T. T. Giap, T. Iitaka, and V. H. Nguyen, “Crystallization of amorphous silica under compresstion,” Canadian Journal of Physics, vol. 97, pp. 1133-1139, 2019.
[17] A. R. Oganov, J. P. Brodholt, and G. D. Price, “Comparative study of quasiharmonic lattice dynamics, molecular dynamics and Debye model applied to MgSiO3 perovskite,” Physics of the Earth and Planetary Interiors, vol. 122, pp. 277-288, 2000.
DOI: https://doi.org/10.34238/tnu-jst.3948
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu