PHÂN TÍCH SỰ BIỂU HIỆN CỦA GEN GmDREB6 TỪ ĐẬU TƯƠNG TRÊN CÂY THUỐC LÁ CHUYỂN GEN TRONG ĐIỀU KIỆN STRESS MẶN
Thông tin bài báo
Ngày nhận bài: 18/05/21                Ngày hoàn thiện: 02/06/21                Ngày đăng: 07/06/21Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] P. Shrivastava and R. Kumar, “Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation,” Saudi J. Biol. Sci., vol. 22, pp. 123-131, 2015, doi: https://doi.org/10.1016/j.sjbs.2014.12.001.
[2] N. S. Muchate, G. C. Nikalje, N. S. Rajurkar, P. Suprasanna, and T. D. Nikam, “Plant salt stress: Adaptive responses, tolerance mechanism and bioengineering for salt tolerance,” Bot. Rev., vol. 82, pp. 371-406, 2016, doi: https://doi.org/10.1007/s12229-016-9173-y.
[3] B. Gupta and B. Huang, “Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterizatio,” International Journal of Genomics, vol. 2014, 2014, Art. no. 701596, doi: https://doi.org/10.1155/2014/701596.
[4] K. Shu, Y. Qi, F. Chen, Y. Meng, X. Luo, H. Shuai, W. Zhou, J. Ding, J. Du, J. Liu, F. Yang, Q. Wang, W. Liu, T. Yong, X. Wang, Y. Feng, and W. Yang, “Salt stress represses soybean seed germination by negatively regulating ga biosynthesis while positively mediating aba biosynthesis,” Front. Plant Sci., vol. 8, 2017, Art. no. 1372, doi: https://doi.org/10.3389/fpls.2017.01372.
[5] S. Rehman, G. Abbas, M. Shahid, M. Saqib, A. B. U. Farooq, M. Hussain, B. Murtaza, M. Amjad, M.A. Naeem, and A. Farooq, “Effect of salinity on cadmium tolerance, ionic homeostasis and oxidative stress responses in conocarpus exposed to cadmium stress: Implications for phytoremediation,” Ecotoxicology and Environmental Safety, vol. 171, pp. 146-153, 2019, doi: https://doi.org/10.1016/j.ecoenv.2018.12.077.
[6] P. Ahmad, M. A. Ahanger, P. Alam, M. N. Alyemeni, L. Wijaya, S. Ali, and M. Ashraf, “Silicon (si) supplementation alleviates nacl toxicity in mung bean [Vigna radiata (l.) Wilczek] through the modifications of physio-biochemical attributes and key antioxidant enzymes,” J. Plant Growth Reg., vol. 38, pp. 70-82, 2019, doi: 10.1007/s00344-018-9810-2.
[7] S. Jan, M. N. Alyemeni, L. Wijaya, P. Alam, K. H. Siddique, and P. Ahmad, “Interactive effect of 24-epibrassinolide and silicon alleviates cadmium stress via the modulation of antioxidant defense and glyoxalase systems and macronutrient content in pisum sativum l. Seedlings,” BMC Plant Biol., vol. 18, 2018, Art. no. 146, doi: 10.1186/s12870-018-1359-5.
[8] M. Hussain, H. W. Park, M. Farooq, H. Jabran, and D. J. Lee, “Morphological and physiological basis of salt resistance in different rice genotypes,” Int. J. Agric. Biol., vol. 15, pp. 113-118, 2013.
[9] S. Schubert, A. Neubert, A. Schierholt, A. Sumer, and C. Zorb, “Development of salt resistant maize hybrids: The combination of physiological strategies using conventional breeding methods,” Plant. Sci., vol. 177, pp. 196-202, 2009, doi: 10.1016/j.plantsci.2009.05.011.
[10] M. N. Uddin, S. Hanstein, R. Leubner, and S. Schubert, “Leaf cell-wall components as influenced in the first phase of salt stress in three maize (zea mays l.) hybrids differing in salt resistance,” J. Agron. Crop Sci., vol. 199, pp. 405-415, 2013, doi: https://doi.org/10.1111/jac.12031.
[11] R. Serraj and T. R. Sinclair, “Osmolyte accumulation: Can it really help increase crop yield under drought conditions,” Plant Cell Environ., vol. 25, pp. 333-341, 2002, doi: https://doi.org/10.1046/j.1365-3040.2002.00754.x.
[12] C. Kaya, A. L. Tuna, and A. M. Okant, “Effect of foliar applied kinetin and indole acetic acid on maize plants grown under saline conditions,” Turk. J. Agric. For., vol. 34, pp. 529-538, 2010, doi: 10.3906/tar-0906-173.
[13] S. P. Kashyap, H. C. Prasanna, K. Nishi, M. Pallavi, and B. Singh, “Understanding salt tolerance mechanism using transcriptome profiling and de novo assembly of wild tomato solanum chilense,” Scientific Reports, vol. 10, 2020, Art. no. 15835, doi: https://doi.org/10.1038/s41598-020-72474-w.
[14] T. Nolan, R. E. Hands, and S. A. Bustin, “Quantification of mRNA using real-time RT-PCR,” Nature Protocols, vol. 1, pp.1559-1582, 2006.
[15] X. X. Zhang, Y. J. Tang, Q. B. Ma, C. Y. Yang, Y. H. Mu, H. C. Suo, L. H. Luo, and H. Nian, “OsDREB2A, a rice transcription factor, significantly affects salt tolerance in transgenic soybean,” PLoS One, vol. 8, 2013, Art. no. e83011, doi: 83010.81371/journal.pone.0083011.
[16] T. N. L. Nguyen, P. Vaciaxa, T. C. Nguyen, H. Q. Nguyen, T. T. N. Pham, T. T. T. Vu, and H. M. Chu, “Characteristics and phylogeny of DREB gene subfamily in soybeans [Glycine max (L.) Meril],” Vietnam Journal of Science, Technology and Engineering (VJSTE), vol. 63, pp. 60-64, 2021.
[17] M. Chen, Q. Y. Wang, Z. S. Xu, L. C. Li, X. G. Ye, L. Q. Xia, and Y. Z. Ma, “GmDREB2, a soybean DRE - binding transcription factor, conferred droungt and high - salt tolerance in transgenic plants,” Biochem Biophys Res Comtmm, vol. 353, pp. 299-305, 2007.
[18] X. T. Dao, M. T. Ho, T. T. T. Vu, V. S. Le, and H. M. Chu, “Cloning and overexpression of GmDREB2 gene from a vietnamese drought-resistant soybean variety,” Braz. Arch. Biol. Technol., vol. 58, pp. 651-657, 2015, doi: https://doi.org/10.1590/S1516-89132015050170.
[19] T. T. N. Pham, H. Q. Nguyen, T. N. L. Nguyen, X. T. Dao, D. T. Sy, V. S. Le, and H. M. Chu, “Overexpression of the GmDREB2 gene increases proline accumulation and tolerance to drought stress in soybean plants,” Australian Journal of Crop Science, vol. 14, pp. 495-503, 2020.
[20] Y. Z. Ma, Y. W. Liu, M. Chen, Z. S. Xu, L. C. Li, and G. Y. Zh, “Glycine max dehydration responsive element binding protein 6 mRNA,” GenBank: EF551166.1, 2007.
[21] H. Q. Nguyen, T. K. L. Vu, T. N. L. Nguyen, T. T. N. Pham, T. H. Y. Nguyen, V. S. Le, and H. M. Chu, “Overexpression of the GmDREB6 gene enhances proline accumulation and salt tolerance in genetically modified soybean plants,” Scientific Reports, vol. 9, 2019, Art. no. 19663, doi: https://doi.org/10.1038/s41598-019-55895-0.
[22] J. F. Topping, “Tobacco transformation,” Methods Mol. Biol., vol. 81, pp. 365-372, 1998.
[23] M. A. Saghai-Maroof, K. M. Soliman, R. A. Jorgensen, and R. W. Allard, “Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics,” Proc Natl Acad Sci USA, vol. 81, pp. 8014-8018, 1984, doi: 10.1073/pnas.81.24.8014.
[24] K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)),” Methods, vol. 25, pp. 402-408, 2001.DOI: https://doi.org/10.34238/tnu-jst.4519
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu