PHÂN TÍCH DẠNG HÓA HỌC VÀ ĐÁNH GIÁ NGUY CƠ Ô NHIỄM MÔI TRƯỜNG BỞI Pb TRONG ĐẤT THẢI CỦA MỎ QUẶNG Pb/Zn LÀNG HÍCH, HUYỆN ĐỒNG HỶ, TỈNH THÁI NGUYÊN | Xuân | TNU Journal of Science and Technology

PHÂN TÍCH DẠNG HÓA HỌC VÀ ĐÁNH GIÁ NGUY CƠ Ô NHIỄM MÔI TRƯỜNG BỞI Pb TRONG ĐẤT THẢI CỦA MỎ QUẶNG Pb/Zn LÀNG HÍCH, HUYỆN ĐỒNG HỶ, TỈNH THÁI NGUYÊN

Thông tin bài báo

Ngày nhận bài: 27/07/21                Ngày hoàn thiện: 12/08/21                Ngày đăng: 18/08/21

Các tác giả

1. Vương Trường Xuân Email to author, Trường Đại học Khoa học – ĐH Thái Nguyên
2. Nguyễn Thị Thu Thuý, Trường Đại học Khoa học – ĐH Thái Nguyên
3. Kiều Phương Thảo, Trường Đại học Khoa học – ĐH Thái Nguyên
4. Dương Thiện Khánh, Trường Đại học Nông Lâm – ĐH Thái Nguyên

Tóm tắt


Việc phân tích dạng hóa học của các kim loại chì là cần thiết để đánh giá chính xác mức độ ô nhiễm và nguy cơ gây ô nhiễm tới môi trường xung quanh của Pb trong đất bãi thải ở vực khai thác khoáng sản. Nghiên cứu này áp dụng quy trình chiết Tessier để xác định các dạng kim loại của chì (Pb) trong các mẫu đất bãi thải ở khu vực mỏ chì/kẽm làng Hích, huyện Đồng Hỷ, tỉnh Thái Nguyên bằng phương pháp ICP-MS. Kết quả cho thấy, Pb tồn tại chủ yếu ở dạng cacbonat (F2) và ít nhất ở dạng liên kết hữu cơ (F4), ngoài ra còn tìm thấy ở dạng liên kết với Fe-Mn oxihydroxide (F3); dạng trao đổi (F1) và dạng cặn dư (F5). Thông qua chỉ số tích luỹ địa chất (Igeo), chỉ số đánh giá rủi ro (RAC) và quy chuẩn kỹ thuật quốc gia về chất lượng đất (QCVN 03-MT: 2015/BTNMT) đã đánh giá được hàm lượng Pb trong các mẫu đất ở khu vực bãi thải của mỏ chì/kẽm ở mức độ ô nhiễm cao và mức độ rủi ro môi trường rất cao.


Từ khóa


Dạng kim loại; Hàm lượng chì; Quy trình chiết Tessier; Mỏ Pb/Zn; ICP-MS

Toàn văn:

PDF

Tài liệu tham khảo


[1] H. S. Lim, J. S. Lee, H. T. Chon, and M. Sager, “Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au-Ag mine in Korea,” J. Geochemical Explor., vol. 96, no. 2-3, pp. 223-230, 2008, doi: 10.1016/j.gexplo.2007.04.008.

[2] Q. Hao and C. Jiang, “Heavy metal concentrations in soils and plants in Rongxi Manganese Mine of Chongqing, Southwest of China,” Acta Ecol. Sin., vol. 35, no. 1, pp. 46-51, 2015, doi: 10.1016/j.chnaes.2015.01.002.

[3] Q. Li, H. Ji, F. Qin, L. Tang, X. Guo, and J. Feng, “Sources and the distribution of heavy metals in the particle size of soil polluted by gold mining upstream of Miyun Reservoir, Beijing: implications for assessing the potential risks,” Environ. Monit. Assess., vol. 186, no. 10, pp. 6605-6626, 2014, doi: 10.1007/s10661-014-3877-4.

[4] N. Basu et al., “Integrated Assessment of Artisanal and Small-Scale Gold Mining in Ghana-Part 1: Human Health Review,” Int. J. Environ. Res. Public Health, vol. 12, no. 5, pp. 5143-5176, 2015, doi: 10.3390/ijerph120505143.

[5] M. Saleem, J. Iqbal, and M. H. Shah, “Geochemical speciation, anthropogenic contamination, risk assessment and source identification of selected metals in freshwater sediments - A case study from Mangla Lake, Pakistan,” Environmental Nanotechnology, Monitoring and Management, vol. 4, pp. 27-36, 2015, doi: 10.1016/j.enmm.2015.02.002.

[6] X. Ma et al., “Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques,” Chemosphere, vol. 144, pp. 264-272, 2016, doi: 10.1016/j.chemosphere.2015.08.026.

[7] Y. G. Gu, Q. Lin, Z. L. Yu, X. N. Wang, C. L. Ke, and J. J. Ning, “Speciation and risk of heavy metals in sediments and human health implications of heavy metals in edible nekton in Beibu Gulf, China: A case study of Qinzhou Bay,” Mar. Pollut. Bull., vol. 101, no. 2, pp. 852-859, 2015, doi: 10.1016/j.marpolbul.2015.11.019.

[8] G. Liu, J. Wang, E. Zhang, J. Hou, and X. Liu, “Heavy metal speciation and risk assessment in dry land and paddy soils near mining areas at Southern China,” Environ. Sci. Pollut. Res., vol. 23, no. 9, pp. 8709-8720, 2016, doi: 10.1007/s11356-016-6114-6.

[9] M. Ahmad et al., “Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions,” Chemosphere, vol. 95, pp. 433–441, 2014, doi: 10.1016/j.chemosphere.2013.09.077.

[10] M. Lei, Y. Zhang, S. Khan, P. F. Qin, and B. H. Liao, “Pollution, fractionation, and mobility of Pb, Cd, Cu, and Zn in garden and paddy soils from a Pb/Zn mining area,” Environmental Monitoring and Assessment, vol. 168, no. 1-4. pp. 215–222, 2010, doi: 10.1007/s10661-009-1105-4.

[11] A. Jamal, M. A. Delavar, A. Naderi, N. Nourieh, B. Medi, and A. H. Mahvi, “Distribution and health risk assessment of heavy metals in soil surrounding a lead and zinc smelting plant in Zanjan, Iran,” Hum. Ecol. Risk Assess., vol. 25, no. 4, pp. 1018-1033, 2019, doi: 10.1080/10807039.2018.1460191.

[12] S. Lu, Y. Wang, Y. Teng, and X. Yu, “Heavy metal pollution and ecological risk assessment of the paddy soils near a zinc-lead mining area in Hunan,” Environ. Monit. Assess., vol. 187, no. 10, 2015, doi: 10.1007/s10661-015-4835-5.

[13] J. Marrugo-Negrete, J. Pinedo-Hernández, and S. Díez, “Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia,” Environ. Res., vol. 154, pp. 380-388, 2017, doi: 10.1016/j.envres.2017.01.021.

[14] S. Cheng, G. Liu, C. Zhou, and R. Sun, “Chemical speciation and risk assessment of cadmium in soils around a typical coal mining area of China,” Ecotoxicol. Environ. Saf., vol. 160, no. May, pp. 67-74, 2018, doi: 10.1016/j.ecoenv.2018.05.022.

[15] D. Qiao, G. Wang, X. Li, S. Wang, and Y. Zhao, “Pollution, sources and environmental risk assessment of heavy metals in the surface AMD water, sediments and surface soils around unexploited Rona Cu deposit, Tibet, China,” Chemosphere, vol. 248, p. 125988, 2020, doi: 10.1016/j.chemosphere.2020.125988.

[16] A. Tessier, P. G. C. Campbell, and M. Bisson, “Sequential Extraction Procedure for the Speciation of Particulate Trace Metals,” Analytical Chemistry, vol. 51, no. 7. pp. 844-851, 1979, doi: 10.1021/ac50043a017.

[17] O. O. Okedeyi, S. Dube, O. R. Awofolu, and M. M. Nindi, “Assessing the enrichment of heavy metals in surface soil and plant (Digitaria eriantha) around coal-fired power plants in South Africa,” Environ. Sci. Pollut. Res., vol. 21, no. 6, pp. 4686-4696, 2014, doi: 10.1007/s11356-013-2432-0.

[18] S. K. Sundaray, B. B. Nayak, S. Lin, and D. Bhatta, “Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments-A case study: Mahanadi basin, India,” Journal of Hazardous Materials, vol. 186, no. 2-3, pp. 1837-1846, 2011, doi: 10.1016/j.jhazmat.2010.12.081.

[19] T. T. A. Duong and V. H. Cao, “Study on the distribution of heavy metals in the sediments of Cau river basin", Journal of Analytical Sciences (in Vietnamese), vol. 20, no. 4, pp. 36-43, 2015.

[20] N. C. Pham et al., “Orechemical and Mineral Characteristics of Lead Zinc Mines in Hich illage Area,” Vietnam J. Earth Sci (in Vietnamese), vol. 33, no. 1, pp. 85-93, 2011, doi: 10.15625/0866-7187/33/1/281.

[21] V. M. Dang et al., “Immobilization of heavy metals in contaminated soil after mining activity by using biochar and other industrial by-products: the significant role of minerals on the biochar surfaces,” Environmental Technology (United Kingdom), 2018, pp. 1-16.




DOI: https://doi.org/10.34238/tnu-jst.4808

Các bài báo tham chiếu

  • Hiện tại không có bài báo tham chiếu
Tạp chí Khoa học và Công nghệ - Đại học Thái Nguyên
Phòng 408, 409 - Tòa nhà Điều hành - Đại học Thái Nguyên
Phường Tân Thịnh - Thành phố Thái Nguyên
Điện thoại: 0208 3840 288 - E-mail: jst@tnu.edu.vn
Phát triển trên nền tảng Open Journal Systems
©2018 All Rights Reserved