MỘT CẢI TIẾN PHÂN CỤM MỜ VỚI THAM SỐ MỜ CHO TỪNG CỤM DỮ LIỆU
Thông tin bài báo
Ngày nhận bài: 09/09/21                Ngày hoàn thiện: 29/11/21                Ngày đăng: 30/11/21Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] Bezdek and C. James, Pattern recognition with fuzzy objective function algorithms, Springer Science & Business Media, 2013.
[2] S. A. Curiskis, B. Drake, T. R. Osborn, and P. J. Kennedy, “An evaluation of document clustering and topic modelling in two online social networks: Twitter and Reddit,” Information Processing & Management, vol. 57.2, 2020, Art. no. 102034.
[4] W. Ding, M. Abdel-Basset, and H. Hawash, “RCTE: A Reliable and Consistent Temporal-ensembling Framework for Semi-supervised Segmentation of COVID-19 Lesions,” Information sciences, vol. 578, pp. 559-573, 2021.
[5] L. Cao, C. Wang, and J. Li, “Vehicle detection from highway satellite images via transfer learning,” Information sciences, vol. 366, pp. 177-187, 2016.
[6] H. T. Pham and H. S. Le,“Some novel hybrid forecast methods based on picture fuzzy clustering for weather nowcasting from satellite image sequences”, Applied Intelligence, vol 46.1, pp. 1-15, 2017.
[7] J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: The fuzzy c‐mean clustering algorithm,” Comput. Geosci, vol. 10, pp. 191-203, 1984.
[8] E. Yasunori, H. Yukihiro, Y. Makito, and M. Sadaaki, “On semi-supervised fuzzy c-means clustering,” Fuzzy Systems, FUZZ-IEEE 2009. IEEE International Conference on, IEEE, 2009, pp. 1119-1124.
[9] X. Yin, T. Shu, and Q. Huang, “Semi-supervised fuzzy clustering with metric learning and entropy regularization,” Knowledge-Based Systems, vol. 35, pp. 304-311, 2012.
[10] H. Zhang and J. Lu, “Semi-supervised fuzzy clustering: A kernel-based approach,” Knowledge-Based Systems, vol. 22, no. 6, pp. 477-481, 2009.
[11] H. S. Le, “Generalized picture distance measure and applications to picture fuzzy clustering,” Applied Soft Computing, vol. 46(C), pp. 284-295, 2016.
[12] E. H. Ruspini, J. C. Bezdek, and J. M. Keller, “Fuzzy clustering: A historical perspective,” IEEE Computational Intelligence Magazine, vol. 14, no. 1, pp. 45-55, 2019.
[13] L. T. Ngo, D. S. Mai, and W. Pedrycz, “Semi-supervising Interval Type-2 Fuzzy C-Means clustering with spatial information for multi-spectral satellite image classification and changedetection,” Computers & geosciences, vol. 83, pp. 1-16, 2015.
[14] M. T. Tran, T. N. Tran, and H. S. Le, “A novel semi-supervised fuzzy clustering method based on interactive fuzzy satisficing for dental X-ray image segmentation,” Applied Intelligence, vol. 45, no. 2, pp. 402-428, 2016.
[15] T. D. Khang, N. D. Vuong, M. K. Tran, and M. Fowler, “Fuzzy C-Means Clustering Algorithm with Multiple Fuzzification Coefficients,” Algorithms, vol. 13, no. 7, p. 158, 2020.
[16] L. Vendramin, R. J. Campello, and E. R. Hruschka, “Relative clustering validity criteria: A comparative overview,” Statistical analysis and data mining: the ASA data science Journal, vol. 3-4, pp. 209-235, 2010.DOI: https://doi.org/10.34238/tnu-jst.4970
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu