ẢNH HƯỞNG CỦA ĐỘ LINH ĐỘNG CỦA ĐIỆN TỬ LÊN TRẠNG THÁI ĐIỆN MÔI EXCITON TRONG CÁC HỢP CHẤT ĐẤT HIẾM CHALCOGENIDE
Thông tin bài báo
Ngày nhận bài: 08/10/21                Ngày hoàn thiện: 09/11/21                Ngày đăng: 10/11/21Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] N. F. Mott, “The transition to the metallic state,” Philosophical Magazine, vol. 6, pp. 287-309, 1961.
[2] G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie, T. Amand, and B. Urbaszek, “Colloquium: Excitons in atomically thin transition metal dichalcogenides,” Reviews of Modern Physics, vol. 90, 2018, Art. no. 021001.
[3] F. Katsch, M. Selig, and A. Knorr, “Exciton-Scattering-Induced Dephasing in Two-Dimensional Semiconductors,” Physical Review Letters, vol. 124, 2020, Art. no. 257402.
[4] H. Yu and W. Yao, “Luminescence anomaly of dipolar valley excitons in homobilayer semiconductor moiré superlattices,” Physical Review X, vol. 11, 2021, Art. no. 021042.
[5] J. C. G. Henriques, N. A. Mortensen, and N. M. R. Peres, “Analytical description of the 1s–exciton linewidth temperature-dependence in transition metal dichalcogenides,” Physical Review B, vol. 103, 2021, Art. no. 235402.
[6] H. Liu, A. Pau, and D. K. Efimkin, “Hybrid dark excitons in monolayer MoS2,” Physical Review B, vol. 104 , 2021, Art. no. 165411.
[7] M. Förg, L. Colombier, R. K. Patel, J. Lindlau, A. D. Mohite, H. Yamaguchi, D. Hunger, and A. Högele, “Cavity-control of bright and dark interlayer excitons in van der Waals heterostructures,” Nature Communications, vol. 10, 2019, Art. no. 3697.
[8] F. Wang, C. Wang, A. Chaves, C. Song, G. Zhang, A. Huang, Y. Lei, Q. Xing, L. Mu, Y. Xie, and H. Yan, “Prediction of hyperbolic exciton-polaritons in monolayer black phosphorus,” Nature communications, vol. 12, 2021, Art. no. 5628.
[9] K. Ludwiczak, A. K. Dąbrowska, J. Binder, M. Tokarczyk, J. Iwański, B. Kurowska, J. Turczyński, G. Kowalski, R. Bożek, R. Stępniewski, W. Pacuski, and A. Wysmołek, “Heteroepitaxial growth of high optical quality, wafer-scale van der Waals heterostrucutres,” ACS Applied materials and interfaces, vol. 13, no. 40, pp. 47904-47911, 2021.
[10] B. Bucher, P. Steiner, and P. Wachter, “Excitonic insulator phase in TmSe0.45Te0.55,” Physical Review Letters, vol. 67, 1991, Art. no. 2717.
[11] P. Wachter, “Exciton condensation in an intermediate valence compound: TmSe0.45Te0.55,” Solid State Communications, vol. 118, pp. 645-650, 2001.
[12] D. Ihle, M. Pfafferott, E. Burovski, F. X. Bronold, and H. Fehske, “Bound state formation and nature of the excitonic insulator phase in the extended Falicov-Kimball model,” Physical Review B, vol. 78, 2008, Art. no. 193103.
[13] N. V. Phan, H. Fehske, and K. W. Becker, “Excitonic resonances in the 2D extended Falicov-Kimball model,” Europhysics Letter, vol. 95, 2011, Art. no. 17006.
[14] B. Zenker, D. Ihle, F. X. Bronold, and H. Fehske, “On the existence of the excitonic insulator phase in the extended Falicov-Kimball model: a SO(2)invariant slave-boson approach,” Physical Review B, vol. 81, 2010, Art. no. 115122.
[15] R. Ramirez, L. M. Falicov, and J. C. Kimball, “Metal-insulator transitions: A simple theoretical model,” Physical Review B, vol. 2, 1970, Art. no. 3383.
[16] T. H. H. Do, T. H. Nguyen, and Q. A. Ho, “Temperature effect on the excitonic condensation state in the extended Falicov – Kimball model including electron-phonon interaction,” (in Vietnamese), Journal minitary science and technology, special issue, pp. 204-209, April 2018.
[17] H. H. T. Do and V. N. Phan, “Spectrial properties in the extended Falicov-Kimball model involving the electron-phonon interaction: Excitonic insulator state formation,” (in Vietnamese), DTU Journal of Science and Technology, vol. 6, no. 31, pp. 89-94, 2018.
[18] H. H. T. Do and V. N. Phan, “Phase diagram of excitonic condensation state in the extended Falicov-Kimball model involving the electron-phonon interaction,” (in Vietnamese), DTU Journal of Science and Technology, vol. 6, no. 31, pp. 95-100, 2018.
[19] T. H. H. Do, D. H. Bui, and V. N. Phan, “Phonon effects in the excitonic condensation induced in the extended Falicov-Kimball model,” Europhysics Letters, vol. 119, no. 4, 2017, Art. no. 47003.
[20] T. H. H. Do, H. N. Nguyen, and V. N. Phan, “Thermal Fluctuations in the Phase Structure of the Excitonic Insulator Charge Density Wave State in the Extended Falicov-Kimball Model,” Journal of Electronic Materials, vol. 48, pp. 2677-2684, 2019.
[21] P. Wachter, “Exciton Condensation and Superfluidity in TmSe0.45Te0.55,” Advances in Materials Physics and Chemistry, vol. 8, no. 3, pp. 120-142, 2018.
[22] T. H. H. Do and T. H. Nguyen, “Influence of the electronic mobility on the excitonic insulator state in semimetal materials,” (in Vietnamese), Journal minitary science and technology, special issue, pp. 57-62, April 2018.DOI: https://doi.org/10.34238/tnu-jst.5132
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu