HIỆU QUẢ CỦA CHẾ PHẨM VI SINH CHỊU MẶN NPISi LÊN ĐẶC TÍNH ĐẤT, SINH TRƯỞNG VÀ NĂNG SUẤT CÂY HÀNH LÁ TẠI HUYỆN TRẦN ĐỀ, TỈNH SÓC TRĂNG | Nghĩa | TNU Journal of Science and Technology

HIỆU QUẢ CỦA CHẾ PHẨM VI SINH CHỊU MẶN NPISi LÊN ĐẶC TÍNH ĐẤT, SINH TRƯỞNG VÀ NĂNG SUẤT CÂY HÀNH LÁ TẠI HUYỆN TRẦN ĐỀ, TỈNH SÓC TRĂNG

Thông tin bài báo

Ngày nhận bài: 30/12/21                Ngày hoàn thiện: 16/02/22                Ngày đăng: 23/02/22

Các tác giả

1. Nguyễn Khởi Nghĩa Email to author, Trường Đại học Cần Thơ
2. Trần Võ Hải Đường, Trường Cao đẳng Kinh tế - Kỹ thuật Bạc Liêu
3. Nguyễn Hửu Thiện, Trường Đại học Cần Thơ

Tóm tắt


Canh tác hành lá tại huyện Trần Đề, tỉnh Sóc Trăng đang có những bước tiến quan trọng góp phần gia tăng thu nhập nông hộ, tuy nhiên vấn đề xâm nhập mặn dẫn đến năng suất hành lá bị suy giảm. Nghiên cứu nhằm đánh giá hiệu quả của chế phẩm vi sinh chịu mặn NPISi (NPISi) lên đặc tính đất, sinh trưởng và năng suất hành lá tại Trần Đề, Sóc Trăng. Thí nghiệm được bố trí theo thể thức khối hoàn toàn ngẫu nhiên với 4 nghiệm thức và 4 lặp lại. Các chỉ tiêu về đặc tính hóa sinh học đất, sinh trưởng và năng suất hành lá được thu thập. Kết quả cho thấy nghiệm thức được bổ sung NPISi hoặc phân hữu cơ (PHC) giúp gia tăng các chỉ tiêu như hàm lượng NH4+, NO3-, P2O5, mật số vi khuẩn cố định đạm, hòa tan lân và silic trong đất cũng như xu hướng gia tăng hàm lượng đạm, lân, kali và silic tổng số trong cây hành lá. Hiệu quả gia tăng tốt nhất khi có sự kết hợp giữa PHC và NPISi. Các dòng vi khuẩn trong chế phẩm NPISi phát triển, kích thích chiều cao và năng suất hành lá trong điều kiện nhiễm mặn, đặc biệt thúc đẩy năng suất lên đến 56,0% so với nghiệm thức bón 100%NPK khi có PHC. Do đó, chế phẩm NPISi được khuyến cáo sử dụng cho cây trồng trên đất nhiễm mặn.

Từ khóa


Chế phẩm vi sinh chịu mặn NPISi; Đặc tính đất; Đất nhiễm mặn; Hành lá; Vi khuẩn cố định đạm

Toàn văn:

PDF (English)

Tài liệu tham khảo


[1] V. K. Le and H. C. Nguyen, “Phycial soil characteristics of the rainfed rice area at Long Phu district Soc Trang province,” Can Tho University Journal of Science, vol. 18, pp. 284-294, 2011.

[2] Phuong Anh, “Farmer Vien Binh (Tran De) increases income from vegetables,” (in Vietnamese), Portal of Soc Trang province, 2020. [Online]. Available: https://www.soctrang.gov.vn. [Accessed Dec. 15, 2021].

[3] R. Munns, S. Husain, A. R. Rivelli, A. J. Richard, A. G. Condon, P. L. Megan, S. L. Evans, D. P. Schachtman, and R. A. Hare, “Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits,” Plant Soil, vol. 247, pp. 93-105, 2002.

[4] V. Martinez and A. Cerda, “Influence of N source on rate of Cl, N, Na and K uptake by cucumber seedling grown in saline condition,” Journal of Plant Nutrition, vol. 12, pp. 971-983, 1989.

[5] K. Al-Aghabary, Z. Zhu, and Q. H. Shi, “Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress,” Journal Plant Nutrition, vol. 27, pp. 2101-2115, 2004.

[6] M. R. Romero-Aranda, O. Jurado, and J. Cuartero, “Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status,” Journal Plant Physiol., vol. 163, pp. 847-855, 2006.

[7] C. Kaya, A. L. Tuna, M. Ashraf, and H. Altunlu, “Improved salt tolerance of melon (Cucumis melo L.) by the addition of proline and potassium nitrate,” Environmental and Experimental Botany Journal, vol. 60, pp. 397-403, 2007.

[8] H. Karlidag, E. Yildirim, and M. Turan, “Salicylic acid ameliorates the adverse effect of salt stress on strawberry,” Journal of Agriculture Science, vol. 66, pp. 180-187, 2009.

[9] M. W. Elwan, “Ameliorative effects of di-potassium hydrogen orthophosphate on salt-stressed eggplant,” Journal Plant Nutrition, vol. 33, pp. 1593-1604, 2010.

[10] M. Paksoy, Ö. Türkmen, and A. Dursun, “Effects of potassium and humic acid on emergence, growth and nutrient contents of okra (Abelmoschus esculentus L.) seedling under saline soil conditions,” African Journal of Biotechnology, vol. 9, pp. 5343-5346, 2010.

[11] A. Aydin, K. Canan, T. Metin, “Humic acid application alleviate salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage,” African Journal of Agriculture Research, vol. 7, pp. 1073-1086, 2012.

[12] A. Bargaz, R. M. A. Nassar, M. M. Rady, M. S. Gaballah, S. M. Thompson, M. Brestic, and M. T. Abdelhamid, “Improved salinity tolerance by phosphorus fertilizer in two Phaseolus vulgaris recombinant inbred lines contrasting in their P-Efficiency,” Journal Agronomy and Crop Science, vol. 202, pp. 497-507, 2016.

[13] A. Manivannan, P. Soundararajan, S. Muneer, C. H. Ko, and B. R. Jeong, “Silicon mitigates salinity stress by regulating the physiology, antioxidant enzyme activities, and protein expression in Capsicum annuum ‘Bugwang’,” BioMed Research International, vol. 2016, 2016, Art. no. 3076357.

[14] D. Egamberdieva and B. Lugtenberg, “Use of plant growth-promoting rhizobacteria to alleviate salinity stress in plants,” in Use of Microbes for the Alleviation of Soil Stresses, vol. 1 M. Miransari, Ed. New York: Springer, 2014, pp. 73-96.

[15] A. M. S. Khalel, “Effect of organic fertilizer in the growth and yield of green onion (Allium cepa L. cv. white local),” Diyala Agricultural Sciences Journal, vol. 5, no. 2, pp. 185-193, 2013.

[16] A. H. Afify, F. I. A. Hauka, and A. M. El-Sawah, “Plant growth-promoting rhizobacteria enhance onion (Allium cepa L.) productivity and minimize requisite chemical fertilization,” Env. Biodiv. Soil Security, vol. 2, pp. 119-129, 2018.

[17] D. K. Kurrey, M. K. Lahre, and G. S. Pagire, “Effect of Azotobacter on growth and yield of onion (Allium cepa L.),” Journal of Pharmacognosy and Phytochemistry, vol. 7, pp. 1171-1175, 2018.

[18] A. Blanco-Vargas, L. M. Rodríguez-Gacha, N. Sánchez-Castro et al., “Phosphate-solubilizing Pseudomonas sp., and Serratia sp., co-culture for Allium cepa L. growth promotion,” Hellyon, vol. 6, pp. 1-12, 2020.

[19] K. N. Nguyen and T. K. O. Nguyen, “Selection of carrier material and substrate for biofertilizer by-product containing three halophilic plant growth promoting bacteria (Burkholderia cepacia BL1-10, Bacillus megaterium ST2-9 và Bacillus aquimaris KG6-3),” Journal of Biotechnology, vol. 15, no. 2, pp. 381-392, 2017.

[20] V. H. D. Tran and K. N. Nguyen, “Isolation and selection of silicate solubilizing bacteria from many various habitats,” Thai Nguyen University Journal of Science and Technology, vol. 180, no. 4, pp. 9-14, 2018.

[21] J. M. Bremmer, “Total nitrogen,” in Methods of Soil Analysis, Part 2; Agronomy Monograph, C. A. Black, Ed., Madison: American Society of Agronomy, 1965, pp. 1149-1178.

[22] B. R. Bertramson, “Phosphorus analysis of plant material,” Plant Physiol., vol. 17, no. 3, pp. 447-454, 1942.

[23] C. L. Bascomb, “Rapid method for the determination of cation exchange capacity of calcareous and non-calcareous soil,” Journal of the Science of Food and Argiculture, vol. 15, pp. 821-823, 1964.

[24] A. Otsuki, and K. Sekiguchi, “Automated determination of amonia in natural freshwaters using salicylate-hexacyanoferrate-dichloroisocyanurate system,” Analytical letter, vol. 16, no. 13, pp. 979-985, 1983.

[25] S. R. Olsen, and L. E. Sommers, “Phosphorus,” in Methods of soil analysis, A. L. Page, Ed., Madison: American society of Agronomy, vol. 9, pp. 403-430, 1982.

[26] M. E. Sumner, and W. P. Miller, “Cation exchange capacity and exchange coefficient,” in Methods of Soil Analysis, D. L. Sparks, Ed., Madison : Soil Science Society of America, 1996, pp. 1201-1231.

[27] H. S. Pereira, G. H. Korndorfer, W. F. Moura, and G. F. Correa, “Silicon extractors available in slag and fertilizer,” Rev. Bras. Cience. Solo., vol. 27, no. 2, pp. 265-274, 2003.

[28] C. T. Hallmark, L. P. Wilding, and Smeck, “Chemical and Microbiological Properties” Methods of Soil Analysis, A. L. Page, Ed., Madison: American Soc. Of Agronomy, 1982, pp. 263-274.

[29] P. W. Wilson, and S. G. Knight, Experiments in Bacterial Physiology, Burgess Publishing Co, 1952.

[30] S. Mehta and C. S. Nautiya, “An efficient method for qualitative screening of phosphatesolubilizing bacteria,” Current Microbiology, vol. 43, pp. 51-56, 2001.

[31] C. P. Gerba, “Indicator Microorganisms,” in Environmental Microbiology, R. M. Maier, Ed., Amsterdam: Elsevier, 2009, pp. 485-499.

[32] M. Park, C. Kim, J. Yang, H. Lee, W. Shin, and S. Kim, “Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea,” Microbiological Research, vol. 160, pp. 127-133, 2005.

[33] K. Ihrmark, I. T. M. Bodeker, K. Cruz-Martinez et al., “New primers to amplify the fungal ITS2 region –evaluation by 454-sequencing of artificial and natural communities,” FEMS Microbiology Ecology, vol. 82, pp. 666-677, 2012.

[34] C.D. Kane, R.L. Jason, E.P. Peffley, L.D. Thompson, C.J. Green, P. Pare, and D. Tissue, “Nutrient solution and solution pH influences on onion growth and mineral content,” Journal of Plant Nutrition, vol. 29, pp. 375-390, 2006.

[35] T. B. Tran, and T. B. T. Vo, “Vegetables,” Can Tho University Publishing House, 2019.

[36] A. Kovács, A. Szabó, and B. E. Szabó, “Studies of the influences of different N fertilizers and Microbion UNC bacterial fertilizer on the nutrient content of soil,” Acta Agraria Debreceniensis, pp. 134-140, (2010). [https://doi.org/10.34101/ACTAAGRAR/I/8391]

[37] A. A. Ajeng, R. Abdullah, M. A. Malek, et al., “The effects of biofetilizers on growth, soil fertility, and nutrients uptake of oil palm (Elaeis guineensis) under greenhouse conditions,” Processes, vol. 8, no. 1681, pp. 1-16, 2020.

[38] F. I. A. Hauka, M. M. B. Samia, A. H. Afifyy, et al., “Effect of using compost, mineral nitrogen and biofertilizer on microbial population in the rhizosphere of wheat plants cultivated in sandy soil,” J. Agric. Chemistry and Biotechnology, vol. 6, pp. 307-314, 2010.

[39] A. M. Shaheen, A. R. Fatma, and S. M. Singer, “Growing onion plants without chemical fertilization,” Res. J. Agric. and Biol. Sci., vol. 3, no. 2, pp. 95-104, 2007.

[40] A. A. Kandil, A. N. E. Attia, A. E. Sharief, and A. A. A. Leilh, “Response of onion (Allium cepa L.) yield to water stress and mineral biofertilization,” Acta Agronomica Hungarica, vol. 59, no. 4, pp. 361-370, 2011.

[41] B. B. M. Salim, and A. A. El-Yazied, “Effect of Bio-NP Fertilizer and Different Doses of Mineral N and P Fertilizers on Growth, Yield Productivity and some Biochemical Constituents of Wheat, Faba bean and Onion Plants,” Middle East J. Appl. Sci., vol. 5, no. 4, pp. 965-974, 2015.

[42] Y. X. Zhu, H. J. Gong, and J. L. Yin, “Role of silicon in mediationg salt tolerance in plants: a review”, Plants, vol. 8, pp. 147, pp. 1-22, 2019.

[43] T. Balemi, N. Pal, and A. K. Saxena, “Response of onion (Allium cepa L.) to combined application of biological and chemical nitrogenous fertilizers,” Acta Agriculturae Slovenica, vol. 89, no. 1, pp: 107-114, 2007.

[44] B. Mahanthesh, M. R. P. Sajjan, V. Srinivasa, et al., “Studies on the influence of bio-fertilizers with levels of NPK on the yield and processing qualities of onion (Allium cepa L.) cv. Bellary Red in rabi season under irrigated situation,” Res. on Crops, vol. 9, no. 1, pp: 98-102, 2008.




DOI: https://doi.org/10.34238/tnu-jst.5401

Các bài báo tham chiếu

  • Hiện tại không có bài báo tham chiếu
Tạp chí Khoa học và Công nghệ - Đại học Thái Nguyên
Phòng 408, 409 - Tòa nhà Điều hành - Đại học Thái Nguyên
Phường Tân Thịnh - Thành phố Thái Nguyên
Điện thoại: 0208 3840 288 - E-mail: jst@tnu.edu.vn
Phát triển trên nền tảng Open Journal Systems
©2018 All Rights Reserved