PHÂN TÍCH NHÓM GEN CHÍNH ĐÁP ỨNG VỚI STRESS HẠN VÀ MẶN Ở CÂY ĐẬU GÀ (Cicer arietinum) BẰNG PHÂN TÍCH DỮ LIỆU GIẢI MÃ HỆ PHIÊN MÃ
Thông tin bài báo
Ngày nhận bài: 27/02/22                Ngày hoàn thiện: 18/04/22                Ngày đăng: 18/04/22Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] L. Yegrem, “Nutritional composition, antinutritional factors, and utilization trends of Ethiopian chickpea (Cicer arietinum L.),” Int J Food Sci, vol. 2021, p. 5570753, 2021.
[2] N. Esfahani, S. Sulieman, J. Schulze, K. Yamaguchi-Shinozaki, K. Shinozaki, and L. S. Tran, “Mechanisms of physiological adjustment of N2 fixation in Cicer arietinum L. (chickpea) during early stages of water deficit: single or multi-factor controls,” Plant J, vol. 79, no. 6, pp. 964-980, 2014.
[3] A. Rani, P. Devi, U. Jha, K. D. Sharma, K. Siddique, and H. Nayyar, “Developing climate-resilient chickpea involving physiological and molecular approaches with a focus on temperature and drought stresses,” Front Plant Sci, vol. 10, p. 1759, 2020.
[4] C. V. Ha, N. Esfahani, Y. Watanabe, U. T. Tran, and S. Sulieman, “Genome-wide identification and expression analysis of the CaNAC family members in chickpea during development, dehydration and ABA treatments,” Plos ONE, vol. 9, no. 12, p. e114107, 2014.
[5] V. H. La, D. H. Chu, D. C. Tran, H. K. Nguyen, T. Q. Le, M. C. Hoang, P. B. Cao, A. C. Pham, D. B. Nguyen, Q. T. Nguyen, V. L. Nguyen, V. C. Ha, T. H. Le, H. H. Le, D. T. Le, and L. S. Tran, “Insights into the gene and protein structures of the CaSWEET family members in chickpea (Cicer arietinum), and their gene expression patterns in different organs under various stress and abscisic acid treatments,” Gene, vol. 819, p. 146210, 2022.
[6] V. K. Singh, M. S. Rajkumar, and R. Garg, “Genome-wide identification and co-expression network analysis provide insights into the roles of auxin response factor gene family in chickpea,” Sci Rep, vol. 7, p. 10895, 2017.
[7] S. Badhan, P. Kole, A. Ball, and N. Mantri, “RNA sequencing of leaf tissues from two contrasting chickpea genotypes reveals mechanisms for drought tolerance,” Plant Physiol Biochem, vol. 129, pp. 295-304, 2018.
[8] R. Sinha, A. Gupta, and M. Senthil-Kumar, “Concurrent drought stress and vascular pathogen infection induce common and distinct transcriptomic responses in chickpea,” Front Plant Sci, vol. 8, p. 333, 2017.
[9] C. Molina, B. Rotter, and R. Horres, “SuperSAGE: the drought stress-responsive transcriptome of chickpea roots,” BMC Genomics, vol. 9, p. 553, 2008.
[10] M. Kaashyap, R. Ford, H. Kudapa, and M. Jain, “Differential regulation of genes involved in root morphogenesis and cell wall modification is associated with salinity tolerance in chickpea,” Sci Rep, vol. 8, no. 1, p. 4855, 2018.
[11] C. Molina, M. Zaman-Allah, F. Khan, and N. Fatnassi, “The salt-responsive transcriptome of chickpea roots and nodules via deepSuperSAGE,” BMC Plant Biol, vol. 11, p. 31, 2011.
[12] T. Barrett, S. E. Wilhite, P. Ledoux, C. Evangelista, I. F. Kim, M. Tomashevsky, K. A. Marshall, K. H. Phillippy, P. M. Sherman, M. Holko, A. Yefanov, H. Lee, N. Zhang, C. L. Robertson, N. Serova, S. Davis, and A. Soboleva, “NCBI GEO: archive for functional genomics data sets – update,” Nucleic Acids Res, vol. 41, pp. D991-D995, 2013.
[13] M. Jain, G. Misra, R. K. Patel, P. Priya, S. Jhanwar, A. W. Khan, N. Shah, V. K. Singh, R. Garg, G. Jeena, M. Yadav, C. Kant, P. Sharma, G. Yadav, S. Bhatia, A. K. Tyagi, and D. Chattopadhyay, “A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.),” Plant J, vol. 74, no. 5, pp. 715-729, 2013.
[14] D. M. Goodstein, S. Shu, R. Howson, R. Neupane, R. D. Hayes, J. Fazo, T. Mitros, W. Dirks, U. Hellsten, N. Putnam, and D. S. Rokhsar, “Phytozome: A comparative platform for green plant genomics,” Nucleic Acids Res, vol. 40, pp. D1178-D1186, 2012.
[15] Y. Liao, G. K. Smyth, and W. Shi, “The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads,” Nucleic Acids Res, vol. 47, p. e47, 2019.
[16] S. El-Gebali, J. Mistry, A. Bateman, S. R. Eddy, A. Luciani, S. C. Potter, M. Qureshi, L. J. Richardson, G. A. Salazar, A. Smart, E. L. Sonnhammer, L. Hirsh, L. Paladin, D. Piovesan, S. C. Tosatto, and R. D. Finn, “The Pfam protein families database in 2019,” Nucleic Acids Res, vol. 47, p. gky995, 2018.
[17] E. Gasteiger, C. Hoogland, A. Gattiker, S. Duvaud, M. R. Wilkins, R. D. Appel, and A. Bairoch, “Protein identification and analysis tools on the ExPASy Server,” In John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press, pp. 571-607, 2005.
[18] K. Shinozaki and K. Yamaguchi-Shinozaki, “Gene networks involved in drought stress response and tolerance,” J Exp Bot, vol. 58, no. 2, pp. 221-227, 2007.
[19] S. Briesemeister, J. Rahnenführer, and O. Kohlbacher, “YLoc - an interpretable web server for predicting subcellular localization,” Nucleic Acids Res, vol. 38, pp. W497-W502, 2010.DOI: https://doi.org/10.34238/tnu-jst.5595
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu