CHẾ TẠO BỀ MẶT SIÊU KỴ NƯỚC TRÊN ĐẾ TÔN
Thông tin bài báo
Ngày nhận bài: 12/05/22                Ngày hoàn thiện: 24/06/22                Ngày đăng: 24/06/22Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] A. A. G. Bruzzone, H. L. Costa, P. M. Lonardo, and D. A. Lucca, “Advances in engineered surfaces for functional performance,” CIRP Annals, vol. 57, no. 2, pp. 750–769, 2008.
[2] A. Malshe, K. Rajurkar, A. Samant, H. N. Hansen, S. Bapat, and W. Jiang, “Bio-inspired functional surfaces for advanced applications,” CIRP Annals, vol. 62, no. 2, pp. 607–628, 2013.
[3] F. de Nicola, P. Hines, M. de Crescenzi, and N. Motta, “Moth-eye effect in hierarchical carbon nanotube anti-reflective coatings,” Carbon, vol. 108, pp. 262–267, 2016.
[4] T. Okabe, T. Yano, K. Yatagawa, and J. Taniguchi, “Polyimide moth-eye nanostructures formed by oxygen ion beam etching for anti-reflection layers,” Microelectronic Engineering, vol. 242–243, 2021, Art. no. 111559.
[5] H. Xu, L. Gong, S. Zhang, R. Ma, L. Pan, J. Zhao, and Y. Li, “Biomimetic Moth-eye Anti-reflective Poly-(methyl methacrylate) Nanostructural Coating,” Journal of Bionic Engineering, vol. 16, no. 6, pp. 1030–1038, 2009.
[6] B. D. Nguyen and T. B. Nguyen, “Investigate on structure for transparent anti-icing surfaces,” AIP Advances, vol. 10, no. 8, 2020, Art. no. 085101.
[7] H. Guo, Y. Xing, H. Yuan, R. Zhang, Y. Zhang, and P. Deng, “Improving the anti-icing performance of superhydrophobic surfaces by nucleation inhibitor,” Surface Engineering, vol. 36, no. 6, pp. 621–627, 2020.
[8] T.-B. Nguyen, S. Park, and H. Lim, “Effects of morphology parameters on anti-icing performance in superhydrophobic surfaces,” Applied Surface Science, vol. 435, pp. 585-591, 2018.
[9] T. B. Nguyen, T. H. H. Vu, T. N. Ngo, and B. D. Nguyen “Anti-icing efficiency on bio-inspired slippery elastomer surface,” Materials Chemistry and Physics, vol. 265, 2021, Art. no. 124502.
[10] T.-B. Nguyen, S. Park, Y. Jung, and H. Lim, “Effects of hydrophobicity and lubricant characteristics on anti-icing performance of slippery lubricant-infused porous surfaces,” Journal of Industrial and Engineering Chemistry, vol. 69. pp. 99-105, 2019.
[11] V.-H. Nguyen, B. D. Nguyen, H. T. Pham, S. S. Laflem, D.-V. N. Vo, M. Shokouhimehr, T. H. H. Vu, T.-B. Nguyen, S. Y. Kim, and Q. V. Le, “Anti-icing performance on aluminum surfaces and proposed model for freezing time calculation,” Scientific Reports, vol. 11, no. 1, 2021, Art. no. 3614.
[12] T. H. H. Vu, X. T. Mai, and T.-B. Nguyen, “Anti-icing approach on flexible slippery microstructure thin-film,” Cold Regions Science and Technology, vol. 186, 2021, Art. no. 103280.
[13] B. D. Nguyen, B. X. Cao, T. C. Do, H. B. Trinh, and T.-B Nguyen, “Interfacial parameters in correlation with anti-icing performance,” Journal of Adhesion, vol. 97, no. 9, pp. 860-872, 2019.
[14] M. A. Sarshar, D. Song, C. Swarctz, J. Lee, and C.-H. Choi, “Anti-Icing or Deicing: Icephobicities of Superhydrophobic Surfaces with Hierarchical Structures,” Langmuir, vol. 34, no. 46, pp. 13821–13827, 2018.
[15] X. T. Mai, T. H. H. Vu, and T. B. Nguyen, “The integrated contribution of surface topology to anti-icing effectiveness,” Surface Topography: Metrology and Properties, vol. 10, no. 1, 2022, Art. no. 15036.
[16] S. Farhadi, M. Farzaneh, and S. A. Kulinich, “Anti-icing performance of superhydrophobic surfaces,” Applied Surface Science, vol. 257, no. 14, pp. 6264–6269, 2011.
[17] J. Yang and W. Li, “Preparation of superhydrophobic surfaces on Al substrates and the anti-icing behavior,” Journal of Alloys and Compounds, vol. 576, pp. 215–219, 2013.
[18] X. Luo, L. Lu, M. Yin, X. Fang, X. Chen, D. Li, L. Yang, G. Li, and J. Ma, “Antireflective and self-cleaning glass with robust moth-eye surface nanostructures for photovoltaic utilization,” Materials Research Bulletin, vol. 109, pp. 183–189, 2019.
[19] W. Zhao, L. Xiao, X. He, Z. Cui, J. Fang, C. Zhang, X. Li, G. Li, L. Zhong, and Y. Zhang, “Moth-eye-inspired texturing surfaces enabled self-cleaning aluminum to achieve photothermal anti-icing,” Optics & Laser Technology, vol. 141, 2021, Art. no. 107115.
[20] Z. He, Y. Zhuo, Z. Zhang, and J. He, “Design of Icephobic Surfaces by Lowering Ice Adhesion Strength: A Mini Review,” Coatings, vol. 11, no. 11, 2021, doi: 10.3390/coatings11111343.
[21] S. A. Kulinich and M. Farzaneh, “Ice adhesion on super-hydrophobic surfaces,” Applied Surface Science, vol. 255, no. 18, pp. 8153–8157, 2009.
[22] A. J. Meuler, J. D. Smith, K. K. Varanasi, J. M. Mabry, G. H. McKinley, and R. E. Cohen, “Relationships between Water Wettability and Ice Adhesion,” ACS Applied Materials & Interfaces, vol. 2, no. 11, pp. 3100–3110, 2010.
[23] D. K. Sarkar and M. Farzaneh, “Superhydrophobic Coatings with Reduced Ice Adhesion,” Journal of Adhesion Science and Technology, vol. 23, no. 9, pp. 1215–1237, 2009.
[24] T. H. H. Vu, X. T. Mai, Q. T. Tu, and T.-B. Nguyen, “Nature-inspired slippery polymer thin film for ice-repellent applications,” Bioinspired, Biomimetic and Nano biomaterials, vol. 10, no. 3, pp. 107–113, 2021.
[25] T. H. H. Vu, T. C. Do, V. H. Chu, M. A. Pham, T. M. T. Nguyen, T. T. Bui, T. M. Dam, S. Sonemany, and T.-B. Nguyen, “Icephobic approach on hierarchical structure polymer thin-film,” Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 13, no. 1, 2022, Art. no. 15004.
DOI: https://doi.org/10.34238/tnu-jst.5978
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu





