CÁC HOẠT ĐỘNG CHỐNG OXY HÓA, HẠ GLUCOSE HUYẾT VÀ HẠ LIPID HUYẾT CỦA CAO KHÔ VỎ BƯỞI (Citrus grandis (L.) Osbeck) Ở CHUỘT ĐÁI THÁO ĐƯỜNG BỞI ALLOXAN MONOHYDRTE | Ngọc | TNU Journal of Science and Technology

CÁC HOẠT ĐỘNG CHỐNG OXY HÓA, HẠ GLUCOSE HUYẾT VÀ HẠ LIPID HUYẾT CỦA CAO KHÔ VỎ BƯỞI (Citrus grandis (L.) Osbeck) Ở CHUỘT ĐÁI THÁO ĐƯỜNG BỞI ALLOXAN MONOHYDRTE

Thông tin bài báo

Ngày nhận bài: 21/06/22                Ngày hoàn thiện: 14/07/22                Ngày đăng: 14/07/22

Các tác giả

1. Trịnh Thị Hồng Ngọc, Trung tâm y tế thành phố Bạc Liêu
2. Trần Chí Linh Email to author, Trường Đại học Cần Thơ
3. Lưu Thái Quản, Trường Đại học Y Dược Cần Thơ
4. Ngô Anh Đức, Trường Đại học Y Dược Cần Thơ
5. Phan Minh Tú, Trường Đại học Y Dược Cần Thơ
6. Đỗ Thị Hồng Xuyến, Trường Đại học Y Dược Cần Thơ
7. Nguyễn Ngọc Quỳnh, Trường Đại học Y Dược Cần Thơ

Tóm tắt


Nghiên cứu này nhằm mục đích đánh giá hoạt động chống đái tháo đường (ức chế α-glucosidase) và chống oxy hóa (trung hòa gốc tự do DPPH; tiềm năng khử sắt) in vitro của cao khô vỏ bưởi Năm Roi. Các hoạt động chống tăng glucose huyết và hạ lipid máu in vivo của cao khô vỏ bưởi Năm Roi ở chuột đái tháo đường do alloxan monohydrate gây ra đã được thực hiện. Cao khô vỏ bưởi Năm Roi có khả năng ức chế enzym α-glucosidase và chống oxy hóa. cao khô vỏ bưởi Năm Roi được sử dụng ở liều lượng thích hợp 100, 200 và 400 mg/kg cho chuột đái tháo đường do alloxan monohydrate làm giảm đáng kể (p<0,05) hàm lượng glucose huyết, triglycerid, cholesterol toàn phần, LDL-cholesterol và VLDL-cholesterol trong huyết thanh của nhóm chuột sử dụng cao khô vỏ bưởi Năm Roi so với nhóm kiểm soát bệnh đái tháo đường. Nồng độ HDL-cholesterol trong huyết thanh cùng với khối lượng cơ thể đã được cải thiện ở những con chuột đái tháo đường được điều trị bằng alloxan monohydrate. Những kết quả này đã chứng minh tác dụng có lợi của cao khô vỏ bưởi Năm Roi trong việc kiểm soát tăng glucose huyết và cải thiện các biến chứng liên quan đến bệnh đái tháo đường.

Từ khóa


Chống đái tháo đường; Chống oxy hóa; Hạ lipid huyết; Glucose huyết; α-Glucosidase

Toàn văn:

PDF

Tài liệu tham khảo


[1] D. Islam, A. Huque, L. Mohanta, E. Lipy, M. Rahman, A. S. Sultana, and U. Prodhan, “Studies on the hypoglycemic and hypolipidemic effects of Nelumbo nucifera leaf in Long-Evans rats,” Journal of Diabetes Mellitus, vol. 7, pp. 55-70, 2017.

[2] M. J. Kim and H. K. Kim, “Anti-diabetic effects of electrolyzed reduced water in streptozotocin-induced and genetic diabetic mice,” Life Sciences, vol. 79, no. 24, pp. 2288-2292, 2006.

[3] A. N. Kesari, S. Kesari, S. K. Singh, R. K. Gupta, and G. Watal, “Studies on the glycemic and lipidemic effect of Murraya koenigii in experimental animals,” Journal of Ethnopharmacology, vol. 112, pp. 305-311, 2007.

[4] F. Ismail-Beigi, T. Craven, M. A. Banerji et al., “Efect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial,” The Lancet, vol. 376, pp. 419-430, 2010.

[5] M. Kanehara, B. L. Zhang, X. M. Gao, D. Q. Zhang, and T. Ishida, “Effect of Tangzhiqing on glucose and lipid metabolism in genetically type 2 diabetes KK-Ay mice,” Journal of Health Science, vol. 54, pp. 203-206, 2008.

[6] M. S. Fageyinbo, A. J. Akindele, S. O. Adenekan, and E. O. Agbaje, “Evaluation of in-vitro and in-vivo antidiabetic, antilipidemic and antioxidant potentials of aqueous root extract of Strophanthus hispidus DC (Apocynaceae),” Journal of Complementary and Integrative Medicine, vol. 16, no. 3, pp. 1-20, 2019.

[7] R. J. Anmol, S. Marium, F. T. Hiew, W. C. Han, L. K. Kwan, A. Wong, F. Khan, M. Sarker, S. Y. Chan, N. Kifli, and L. C. Ming, “Phytochemical and therapeutic potential of Citrus grandis (L.) Osbeck: A review,” Journal of Evidence-Based Integrative Medicine, vol. 26, pp. 1-20, 2021.

[8] D. Kumar, M. S. Ladaniya, and M. Gurjar, “Underutilized Citrus sp. pomelo (Citrus grandis) and Kachai lemon (Citrus jambhiri) exhale in phytochemicals and antioxidant potential,” J Food Sci Technol, vol. 56, no. 1, pp. 217-223, 2019.

[9] N. N. Shah, R. A. Rahman, R. Shamsuddin, and N. M. Adzahan, “Effects of pectinase clarification treatment on phenolic compounds of pummelo (Citrus grandis L. Osbeck) fruit juice,” J Food Sci Technol, vol. 52, no. 8, pp. 5057-5065, 2015.

[10] S. M. Poulose, E. D. Harris, and B. S. Patil, “Citrus limonoids induce apoptosis in human neuroblastoma cells and have radical scavenging activity,” Journal of Nutrition, vol. 135, no. 4, pp. 870-877, 2005.

[11] G. Oboh, F. O. Bello, and A. O. Ademosun, “Hypocholesterolemic properties of grapefruit (Citrus paradisii) and shaddock (Citrus maxima) juices and inhibition of angiotensin-1-converting enzyme activity,” Journal of Food and Drug Analysis, vol. 22, no. 4, pp. 477-484, 2014.

[12] M. Y. Ali, N. N. Rumpa, S. Paul et al., “Antioxidant potential, subacute toxicity, and beneficiary effects of methanolic extract of pomelo (Citrus grandis L. Osbeck) in long evan rats,” Journal of Toxicology, vol. 1, pp. 1-12, 2019.

[13] K. Makynen, S. Jitsaardkul, P. Tachasamran et al., “Cultivar variations in antioxidant and antihyperlipidemic properties of pomelo pulp (Citrus grandis [L.] Osbeck) in Thailand,” Food Chemistry, vol. 139, no. 1-4, pp. 735-743, 2013.

[14] O. P. Sharma and T. K. Bhat, “DPPH antioxidant assay revisited,” Food Chemistry, vol. 113, pp. 1202-1205, 2009.

[15] I. F. F. Benzie and J. J. Strain, “The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power”, the FRAP assay,” Analytical Biochemistry, vol. 239, no. 1, pp. 70-76, 1996.

[16] A. E. Khorasani, R. Mat Taha, S. Mohajer, and B. Banisalam, “Antioxidant activity and total phenolic and flavonoid content of various solvent extracts from in vivo and in vitro grown Trifolium pratense L. (Red Clover),” BioMed Research International, vol. 15, no. 2, pp. 1-11, 2015.

[17] T. Chipiti, M. A. Ibrahim, M. Singh, and M. S. Islam, “In vitro α-amylase and α-glucosidase inhibitory effects and cytotoxic activity of Albizia antunesiana extracts,” Pharmacognosy Magazine, vol. 11, no. 2, pp. 231-236, 2015.

[18] E. A. H. Mohamed, M. J. A. Siddiqui, L. F. Ang, A. Sadikun, S. H. Chan, S. C. Tan, and M. F. Yam, “Potent α-glucosidase and α-amylase inhibitory activities of standardized 50% ethanolic extracts and sinensetin from Orthosiphon stamineus Benth as anti-diabetic mechanism,” BMC Complementary and Alternative Medicine, vol. 12, no. 1, pp. 176-189, 2012.

[19] T. J. Chen, P. Gao, Y. Xiang, J. Chen, P. Ji, H. Xie, W. Wu, Y. Xiao, S. Wei, L. Wang, H. Lan, and T. Ji, “Protective effect of platyodin D on liver injury in alloxan-induced diabetic mice via regulation o Treg/Th 17 balance,” International Immunopharmacology, vol. 26, no. 2, pp. 338-348, 2015.

[20] T.N. Doan, T.D. Do, D.M. Pham, T.D. Nguyen and T.T.H. Nguyen, Methods for studying the pharmacological effects of herbal drugs. Science and Technology Publishing House, 2006.

[21] T.X.T. Đai., C.L. Vo, and T.A.L. Nguyen, “The hypoglycaemic, lipid-regulating and antioxidant effects of the leaves of Coccinia grandis (L.) Voigt.) on hyperglycemia-induced rats,” Journal of Biotechnology, vol. 16, no. 2, pp. 311-318, 2018.

[22] W. T. Friedewald, R. I. Levy, and D. S. Fredrickson, “Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge,” Clinical Chemistry, vol. 18, no. 6, pp. 499-502, 1972.

[23] American Diabetes Association, “Report of the expert committee on the diagnosis and classification of diabetes mellitus,” Diabetes Care, vol. 38, pp. 8-16, 2015.

[24] A. A. Oduje, O. S. A. Rapheal, and A. C. John, “Assessment of the antioxidative properties of hyphaene thebaica fruit and its comparative inhibitory activities with butylhydroxylanisole on α-amylase and α-glucosidase enzymes,” Int J Complement Alt Med, vol. 4, no. 4, p. 125, 2016.

[25] T. Jittarawadee, I. Khwunjit, P. Piyanuch, I. Nisada, and S. Nuttarut, “Evaluation of antioxidant properties and bioactive compound from pomelo (Citrus grandis (L.) Osbeck) peel in antimicrobial for cosmetic products,” Phranakhon Rajabhat Research Journal, vol. 15, no. 1, pp. 69-85, 2020.

[26] H. P. S. Makkar, T. Norvsambuu, S. Lkhavatsere, and K. Becker, “Plant secondary metabolites in some medicinal plants of Mongolia used for enhancing animal health and production,” Tropicultura, vol. 27, no. 3, pp. 159-67, 2009.

[27] M. J. Muhammad, A. -H. Azizah, M. G. Hasanah, S. P. D. Mohd, S. R. Nurul, H. J. Ahmad, K. Jeeven, and S. M. Abdulkarim, “Antioxidant and antidiabetic phytochemicals of yellow-skinned watermelon (Citrullus lanatus) extract,” Journal of Food and Nutrition Research, vol. 7, no. 1, pp. 82-95, 2019.

[28] C. E. Mathews and E. H. Leiter, “Constitutive differences in antioxidant defense status distinguish alloxan-resistant and alloxan-susceptible mice,” Free Radical Biology & Medicine, vol. 27, pp. 449-455, 1999.

[29] J. A. Abdel-Barry, I. A. Abdel-Hassan, and M. H. Al-Hakiem, “Hypoglycemic and antihyperglycemic effects of Trigonella foenum-graecum leaf in normal and alloxan-induced diabetic rats,” The Journal of Ethnopharmacology, vol. 58, pp. 149-155, 1997.

[30] O. M. Ighodaro, A. M. Adeosun, and O. A.Akinloye, “Alloxan-induced diabetes, a common model for evaluating the glycemic-control potential of therapeutic compounds and plants extracts in experimental studies,” Medicina (B Aires), vol. 53, no. 6, pp. 365-374, 2017.

[31] W. Ahmad, I. Khan, M. A. Khan, M. Ahmad, F. Subhan, and N. Karim, “Evaluation of antidiabetic and antihyperlipidemic activity of Artemisia indica linn (aeriel parts) in Streptozotocin induced diabetic rats,” Journal of Ethnopharmacology, vol. 151, pp. 618-623, 2014.

[32] S. K. Das, D. Samantaray, J. K. Patra, L. Samanta, and H. Thatoi, “Antidiabetic potential of mangrove plants: A review,” Frontiers in Life Science, vol. 9, no. 1, pp. 75-88, 2016.

[33] M. Liu, X. Song, J. Zhang et al., “Protective effects on liver, kidney and pancreas of enzymatic-and acidic-hydrolysis of polysaccharides by spent mushroom compost (Hypsizigus marmoreus),” Scientific Reports, vol. 7, no. 1, pp. 1-12, 2017.

[34] L. Wang, N. Xu, J. Zhang, H. Zhao, L. Lin, S. Jia, and L. Jia, “Antihyperlipidemic and hepatoprotective activities of residue polysaccharide from Cordyceps militaris SU-12,” Carbohydrate Polymers, vol. 131, pp. 355-362, 2015.

[35] C. Jiang, Q. Wang, Y. Wei, N. Yao, Z. Wu, Y. Ma, Z. Lin, M. Zhao, C. Che, X. Yao, J. Zhang, and Z. Yin, “Cholesterol-lowering effects and potential mechanisms of different polar extracts from Cyclocarya paliurus leave in hyperlipidemic mice,” Journal of Ethnopharmacol, vol. 176, pp. 17-26, 2015.

[36] P. J. Meikle, G. Wong, C. K. Barlow, and B. A. Kingwell, “Lipidomics: Potential role in risk prediction and therapeutic monitoring for diabetes and cardiovascular disease,” Pharmacology & Therapeutics, vol. 143, no. 1, pp. 12-23, 2014.

[37] K. Tan, “Re-examining the high-density lipoprotein hypothesis,” Journal of Diabetes Investigation, vol. 7, no. 4, pp. 445-447, 2016.




DOI: https://doi.org/10.34238/tnu-jst.6202

Các bài báo tham chiếu

  • Hiện tại không có bài báo tham chiếu
Tạp chí Khoa học và Công nghệ - Đại học Thái Nguyên
Phòng 408, 409 - Tòa nhà Điều hành - Đại học Thái Nguyên
Phường Tân Thịnh - Thành phố Thái Nguyên
Điện thoại: 0208 3840 288 - E-mail: jst@tnu.edu.vn
Phát triển trên nền tảng Open Journal Systems
©2018 All Rights Reserved