KHẢ NĂNG ỨC CHẾ PROTEIN ĐIỀU HÒA QUÁ TRÌNH ĐƯỜNG PHÂN VÀ APOPTOSIS CỦA TP53 TRONG CON ĐƯỜNG TĂNG SINH TẾ BÀO UNG THƯ CỦA CÁC HỢP CHẤT TỪ CÂY Goniothalamus elegans Ast (Annonaceae)
Thông tin bài báo
Ngày nhận bài: 10/08/22                Ngày hoàn thiện: 04/11/22                Ngày đăng: 23/11/22Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] H. Li and G. Jogl, "Structural and biochemical studies of TIGAR (TP53-induced glycolysis and apoptosis regulator)," Journal of Biological Chemistry, vol. 284, no. 3, pp. 1748-1754, 2009.
[2] K. Bensaad et al., "TIGAR, a p53-inducible regulator of glycolysis and apoptosis," Cell, vol. 126, no. 1, pp. 107-120, 2006.
[3] E. C. Cheung et al., "TIGAR is required for efficient intestinal regeneration and tumorigenesis," Developmental Cell, vol. 25, no. 5, pp. 463-477, 2013.
[4] N. Hammoudi, K. B. Ahmed, C. Garcia-Prieto, and P. Huang, "Metabolic alterations in cancer cells and therapeutic implications," Chinese Journal of Cancer, vol. 30, no. 8, pp. 508-525, 2011.
[5] J. M. Xie et al., "TIGAR has a dual role in cancer cell survival through regulating apoptosis and autophagy," Cancer Research, vol. 74, no. 18, pp. 5127-5138, 2014.
[6] S. Brogi, T. C. Ramalho, K. Kuca, J. L. Medina-Franco, and M. Valko, "Editorial: In silico Methods for Drug Design and Discovery," Frontiers in Chemistry, vol. 8, pp. 1-5, 2020.
[7] V. V. Chi, Dictionary of Vietnamese Medicinal Plants. Publishing House Medicine, Ho Chi Minh City, (in Vietnamese), 2000, pp. 1024-2015.
[8] National Institute of Medicinal Materials, List of Vietnamese medicinal plants. Science and Technics Publishing House, (in Vietnamese), 2016, pp. 92-400.
[9] M. Aslam, M. S. Ahmad, A. Mamat, M. Ahmad, and F. Salam, "Goniothalamus: Phytochemical and Ethnobotanical Review," Recent advances in biology and Medicine, vol. 2, pp. 34-47, 2016.
[10] N. Suchaichit, K. Kanokmedhakul, N. Panthama, K. Poopasit, P. Moosophon, and S. Kanokmedhakul, "A 2H-tetrahydropyran derivative and bioactive constituents from the bark of Goniothalamus elegants Ast," Fitoterapia, vol. 103, pp. 206-212, 2015.
[11] L. T. T. Tran et al., "In Silico and in Vitro Evaluation of Alkaloids from Goniothalamus elegans Ast. for Breast Cancer Treatment," Natural Product Communications, vol. 17, no. 3, pp. 1-10, 2022.
[12] N. Nordin, N. A. Majid, N. M. Hashim, M. A. Rahman, Z. Hassan, and H. M. Ali, "Liriodenine, an aporphine alkaloid from Enicosanthellum pulchrum, inhibits proliferation of human ovarian cancer cells through induction of apoptosis via the mitochondrial signaling pathway and blocking cell cycle progression," Drug design, development and therapy, vol. 9, pp. 1437-1448, 2015.
[13] C. Souza et al., "Asarone-derived phenylpropanoids and isoquinoline-derived alkaloids from the bark of Duguetia pycnastera (Annonaceae) and their cytotoxicities," Química Nova, vol. 43, no. 10, pp. 1397-1403, 2020.
[14] W. Tian, C. Chen, X. Lei, J. Zhao, and J. Liang, "CASTp 3.0: computed atlas of surface topography of proteins," Nucleic Acids Res, vol. 46, no. W1, pp. 363-367, 2018.
[15] A. Monks et al., "Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines," Journal of the National Cancer Institute, vol. 83, no. 11, pp. 757-766, 1991.
[16] T. Koltai, S. J. Reshkin, T. M. A. Carvalho, D. D. Molfetta, M. R. Greco, K. O. Alfarouk, and R. A. Cardone, “Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma: A Physiopathologic and Pharmacologic Review,” Cancers, vol. 14, no. 10, 2022, Art. no. 2486.
[17] C. Stévigny, C. Bailly, and J. Quetin-Leclercq, "Cytotoxic and antitumor potentialities of aporphinoid alkaloids," Current Medicinal Chemistry Anticancer Agents, vol. 5, no. 2, pp. 173-182, 2005.
[18] T. K. Kwan, F. Shipton, N. S. Azman, S. Hossan, K. T. Jin, and C. Wiart, "Cytotoxic aporphines from Artabotrys crassifolius," Natural Product Communications, vol. 11, no. 3, pp. 389-392, 2016.
[19] Y. C. Wu, Y. F. Liou, S. T. Lu, C. H. Chen, J. J. Chang, and K. H. Lee, "Cytotoxicity of isoquinoline alkaloids and their N-oxides," Planta Medica, vol. 55, no. 2, pp. 163-165, 1989.
[20] C. H. Yang, M. J. Cheng, S. J. Lee, C. W. Yang, H. S. Chang, and I. S. Chen, "Secondary metabolites and cytotoxic activities from the stem bark of Zanthoxylum nitidum," Chemistry & Biodiversity, vol. 6, no. 6, pp. 846-857, 2009.
[21] S. H. Woo, M. C. Reynolds, N. J. Sun, J. M. Cassady, and R. M. Snapka, "Inhibition of topoisomerase II by liriodenine," Biochemical Pharmacology, vol. 54, no. 4, pp. 467-473, 1997.
[22] H. C. Chang, F. R. Chang, Y. C. Wu, and Y. H. Lai, "Anti-cancer effect of liriodenine on human lung cancer cells," Kaohsiung Journal of Medical Sciences, vol. 20, no. 8, pp. 365-371, 2004.
[23] Z. H. Li, J. Gao, P. H. Hu, and J. P. Xiong, "Anticancer effects of liriodenine on the cell growth and apoptosis of human breast cancer MCF-7 cells through the upregulation of p53 expression," Oncology Letters, vol. 14, no. 2, pp. 1979-1984, 2017.DOI: https://doi.org/10.34238/tnu-jst.6350
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu