ỨNG DỤNG NANO VÀNG TRONG HỖ TRỢ CHẨN ĐOÁN VÀ ĐIỀU TRỊ UNG THƯ | Phượng | TNU Journal of Science and Technology

ỨNG DỤNG NANO VÀNG TRONG HỖ TRỢ CHẨN ĐOÁN VÀ ĐIỀU TRỊ UNG THƯ

Thông tin bài báo

Ngày nhận bài: 23/08/22                Ngày hoàn thiện: 16/09/22                Ngày đăng: 16/09/22

Các tác giả

Tô Kim Phượng Email to author, Trường Đại học Trà Vinh

Tóm tắt


Sự phát triển nhanh chóng của công nghệ nano trong những năm qua đã cung cấp nhiều ứng dụng tiềm năng trong khoa học và công nghệ, đáng chú ý là sự phát triển ngày càng mạnh mẽ trong lĩnh vực nano y học. Trong số các vật liệu nano kim loại, hạt nano vàng được ghi nhận sử dụng trong việc điều trị nhiều bệnh ở người, từ bệnh thoái hóa đến bệnh truyền nhiễm, và đặc biệt là trong điều trị ung thư ác tính. Vài thập kỷ trở lại đây, các nghiên cứu đa ngành đã tập trung vào việc thiết kế và tối ưu hóa hạt nano vàng nhằm hỗ trợ các phương pháp chẩn đoán ung thư và tăng cường hiệu quả trong điều trị căn bệnh quái ác này. Dựa vào khả năng hấp thụ tia phóng xạ cao, các đặc tính lý hóa độc đáo, tính chọn lọc cao trong việc nhắm mục tiêu đến các tế bào khối u đích, độc tính thấp, cũng như khả năng vận chuyển các loại thuốc chống ung thư hiệu quả và việc kết hợp dễ dàng với các phương pháp điều trị khác, các hạt nano vàng xuất hiện như yếu tố đầy tiềm năng trong việc phát triển các liệu pháp điều trị mới trong ung thư học. Tuy chưa được chấp nhận sử dụng đại trà trong lâm sàng, những nghiên cứu mở rộng về hạt nano vàng cho thấy tiềm năng của chúng trong cuộc chiến chống lại ung thư. Bài tổng quan này phân tích các vai trò quan trọng của hạt nano vàng như chất tương phản trong hỗ trợ chẩn đoán hình ảnh, chất vận chuyển thuốc/ vật liệu di truyền, chất tăng cường đáp ứng xạ trị, chất tham gia vào liệu pháp quang nhiệt chống ung thư, và tóm tắt những tiến bộ gần đây nhất trong nghiên cứu thử nghiệm cũng như cập nhật các ứng dụng lâm sàng của hạt nano vàng trong điều trị ung thư.

 


Từ khóa


Hạt nano vàng; Ung thư; Xạ trị; Vận chuyển thuốc; Liệu pháp

Toàn văn:

PDF

Tài liệu tham khảo


[1] H. Sung et al., “Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” CA: a cancer journal for clinicians, vol. 71, no. 3 pp. 209-249, 2021, doi: 10.3322/caac.21660.

[2] M. M. Fidler et al., “The global cancer burden and human development: A review,” Scandinavian Journal of public health, vol. 46, no. 1, pp. 27-36, 2018, doi: 10.1177/1403494817715400.

[3] P. Singh and I. Mijakovic, “Advances in gold nanoparticle technology as a tool for diagnostics and treatment of cancer,” Expert review of molecular diagnostics, vol. 21, no. 7, pp. 627-630, 2021, doi: 10.1080/14737159.2021.1933447.

[4] B. J. Vines et al., “Gold Nanoparticles for Photothermal Cancer Therapy,” Frontiers in chemistry, vol. 7, 2019, Art. no. 167, doi:10.3389/fchem.2019.00167.

[5] S. K. Sahoo et al., “The present and future of nanotechnology in human health care,” Nanomedicine : nanotechnology, biology, and medicine, vol. 3, no. 1, pp. 20-31, 2007, doi: 10.1016/j.nano.2006.11.008.

[6] W. Cai et al., “Applications of gold nanoparticles in cancer nanotechnology,” Nanotechnology, science and applications, vol. 1, pp. 17-32, 2008, doi: 10.2147/nsa.s3788.

[7] I. Fratoddi et al., “How toxic are gold nanoparticles? The state-of-the-art,” Nano Research, vol. 8, pp. 1771-1799, 2015.

[8] A. Kumar et al., “Gold nanoparticles: emerging paradigm for targeted drug delivery system,” Biotechnology advances, vol. 31, no. 5, pp. 593-606, 2013, doi: 10.1016/j.biotechadv.2012.10.002.

[9] V. Fernández-Moreira, H. P. Raquel, and G. M. Concepción, “Anticancer properties of gold complexes with biologically relevant ligands,” Pure and Applied Chemistry, vol. 91, no. 2, pp. 247-269, 2019, doi: 10.1515/pac-2018-0901.

[10] X. Ma et al., “π-π nanoassembly of water-soluble metalloporphyrin of ZnTCPP on RGO/AuNPs/CS nanocomposites for photoelectrochemical sensing of hydroquinone,” Journal of Electroanalytical Chemistry, vol. 820, pp. 123-131, 2018.

[11] S. Nafisi and H. I. Maibach, Chapter 22 – Nanotechnology in Cosmetics, Cosmetic Science and Technology: Theoretical Principles and Applications, Elsevier Inc, 2017.

[12] N. K. A. Nguyen, T. D. H. Nguyen, and T. T. N. Nguyen, “Preparation of gold nanoparticles using reducing agent in tea leaves to cosmetic application,” Cantho University Journal of Science, vol. 54(7A), pp. 77-84, 2018.

[13] Q. L. Le, T. L. Nguyen, H. N. Nguyen, and T. P. L. Do, “Preparation of gold/carboxymethyl chitosan nanoparticles by radiation technique for application as an antioxidant,” Vietnam Journal of Science and Technology, vol. 3, no. 11, pp. 52-57, 2015.

[14] T. L. Le, T. T. H. Nguyen, and T. H. Tran, “Synthesis of gold nanoparticles using water soluble chitosan as reducer and stabilizer agent,” Hue University Journal of Science, vol. 74A, no. 5, pp. 65-75, 2012.

[15] T. T. D. Vu et al., “Photothermal effect of gold nanoshells in tissue,” Journal of Science and Technology, vol. 54, no. 1, pp. 74-81, 2016.

[16] L. A. Dykman and N. G. Khlebtsov, “Gold nanoparticles in biology and medicine: recent advances and prospects,” Acta naturae, vol. 3, no. 2, pp. 34-55, 2011.

[17] G. Mie, “Contributions to the Optics of Turbid Media, Particularly of Colloidal Metal solutions,” Annalen der Physik, vol. 25, pp. 377-445, 1908, doi: 10.1002/andp.19083300302.

[18] C. T. Campbell, J. C. Sharp, T. Charles, Y. X. Yao, E. M. Karpb, and T. L. Silbaughb, “Insights into catalysis by gold nanoparticles and their support effects through surface science studies of model catalysts,” Faraday Discussions, vol. 152, pp. 227-239, 2011.

[19] R. Seoudi and D. A. Said, “Studies on the Effect of the Capping Materials on the Spherical Gold Nanoparticles Catalytic Activity,” World Journal of Nano Science and Engineering, vol. 1, pp. 51-61, 2011.

[20] X. Huang, S. Neretia, and M. A. El-Sayed, “Gold nanorods: From synthesis and properties to biological and biomedical applications,” Advanced Materials, vol. 21, pp. 4880-4910, 2009.

[21] L. Vigderman, P. K. Bishnu, and R. Z. Euger, “Functional Gold Nanorods: Synthesis, Self-assembly and Sensing Applications,” Advanced Materials, vol. 24, pp. 4811-4841, 2012.

[22] A. Azam, F. Ahmed, N. Arshi, M. Chaman, and A. H. Naqvi, “One step synthesis and characterization of gold nanoparticles and their antibacterial activities against E. coli (ATCC 25922 strain),” International Journal of Theoretical and Applied Sciences, vol. 1, no. 2, pp. 1-4, 2009.

[23] Y. Cui, Y. Zhao, Y. Tian, W. Zhang, X. Lü, and X. Jiang, “The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli,Biomaterials, vol. 33, pp. 2327-2333, 2012.

[24] P. Liny, T. K. Divya, M. Barasa, B. Nagaraj, N. B. Kríhnamurthy, and R. Dinesh, “Preparation of gold nanoparticles from helianthus annuus (Sun flower) flowers and evaluation of their antimicrobial activities,” International Journal of Pharmacy and Biological Sciences, vol. 3, pp. 439-446, 2012.

[25] S. Lokina and V. Narayanan, “Antimicrobial and Anticancer Activity of Gold Nanoparticles Synthesized from Grapes Fruit Extract,” Chemical Science Transactions, vol. 2(S1), pp. S105-S110, 2013.

[26] N. H. McQuaid et al., “Imaging and radiation effects of gold nanoparticles in tumour cells,” Scientific reports, vol. 6, 2016, Art. no. 19442, doi: 10.1038/srep19442.

[27] K. C. Kwon et al., “Superparamagnetic Gold Nanoparticles Synthesized on Protein Particle Scaffolds for Cancer Theragnosis,” Advanced materials (Deerfield Beach, Fla.), vol. 29, 2017, doi: 10.1002/adma.201701146. doi:10.1002/adma.201701146.

[28] P. K. Jain et al., “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” The Journal of physical chemistry, vol. 110, no. 14, pp. 7238-7248, 2016, doi: 10.1021/jp057170o.

[29] M. Longmire et al., “Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats,” Nanomedicine (London, England), vol. 3, no. 5, pp. 703-717, 2008, doi: 10.2217/17435889.3.5.703.

[30] G. P. Luke et al., “Sentinel lymph node biopsy revisited: ultrasound-guided photoacoustic detection of micrometastases using molecularly targeted plasmonic nanosensors,” Cancer research, vol. 74, no. 19, pp. 5397-5408, 2014, doi: 10.1158/0008-5472.CAN-14-0796.

[31] S. Han et al., “Molecular photoacoustic imaging with ultra-small gold nanoparticles,” Biomedical optics express, vol. 10, no. 7, pp. 3472-3483, 2019, doi: 10.1364/BOE.10.003472.

[32] J. Song et al., “Ultrasmall Gold Nanorod Vesicles with Enhanced Tumor Accumulation and Fast Excretion from the Body for Cancer Therapy,” Advanced materials (Deerfield Beach, Fla.), vol. 27, no. 33, pp. 4910-4917, 2015, doi: 10.1002/adma.201502486.

[33] W. Fan et al., “Intelligent MnO2 Nanosheets Anchored with Upconversion Nanoprobes for Concurrent pH-/H2O2-Responsive UCL Imaging and Oxygen-Elevated Synergetic Therapy,” Advanced materials (Deerfield Beach, Fla.), vol. 27, no. 28, pp. 4155-4161, 2015, doi: 10.1002/adma.201405141.

[34] F. Chen et al., “Dynamic Positron Emission Tomography Imaging of Renal Clearable Gold Nanoparticles,” Small (Weinheim an der Bergstrasse, Germany), vol. 12, no. 20, pp. 2775-2782, 2016, doi: 10.1002/smll.201600194.

[35] C. Kojima et al., “X-ray computed tomography contrast agents prepared by seeded growth of gold nanoparticles in PEGylated dendrimer,” Nanotechnology, vol. 21, no. 24, 2010, Art. no. 245104, doi: 10.1088/0957-4484/21/24/245104.

[36] C. Xu et al., “Size and Concentration Effect of Gold Nanoparticles on X-ray Attenuation As Measured on Computed Tomography,” Chemistry of materials : a publication of the American Chemical Society, vol. 20, no. 13, pp. 4167-4169, 2008, doi:10.1021/cm8008418.

[37] D. Rand et al., “Nanomaterials for X-ray imaging: gold nanoparticle enhancement of X-ray scatter imaging of hepatocellular carcinoma,” Nano letters, vol. 11, no. 7, pp. 2678-2683, 2011, doi: 10.1021/nl200858y.

[38] J. F. Hainfeld et al., “The use of gold nanoparticles to enhance radiotherapy in mice,” Physics in medicine and biology, vol. 49, no. 18, pp. N309-N315, 2004, doi: 10.1088/0031-9155/49/18/n03.

[39] V. Ramalingam, “Multifunctionality of gold nanoparticles: Plausible and convincing properties,” Advances in colloid and interface science, vol. 271, 2019, Art. no. 101989, doi: 10.1016/j.cis.2019.101989.

[40] G. F. Paciotti et al., “Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery,” Drug delivery, vol. 11, no. 3, pp. 169-183, 2004, doi: 10.1080/10717540490433895.

[41] S. Govindaraju et al., “Kaempferol conjugated gold nanoclusters enabled efficient for anticancer therapeutics to A549 lung cancer cells,” International journal of nanomedicine, vol. 14, pp. 5147-5157, 2019, doi: 10.2147/IJN.S209773.

[42] X. Zhang et al., “A chemo-photothermal synergetic antitumor drug delivery system: Gold nanoshell coated wedelolactone liposome,” Materials science & engineering. C, Materials for biological applications, vol. 101, pp. 505-512, 2019, doi:10.1016/j.msec.2019.04.006.

[43] K. Sztandera, M. Gorzkiewicz, and B. Klajnert-Maculewicz, “Gold Nanoparticles in Cancer Treatment,” Mol. Pharmaceutics, vol. 16, pp. 1-23, 2019, doi: 10.1021/acs.molpharmaceut.8b00810.

[44] F. Pan et al., “Conjugation of gold nanoparticles and recombinant human endostatin modulates vascular normalization via interruption of anterior gradient 2-mediated angiogenesis,” Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine, vol. 39, no. 7 2017, Art. no. 1010428317708547, doi: 10.1177/1010428317708547.

[45] Y. Yang et al., “Multifunctional Gold Nanoparticles in Cancer Diagnosis and Treatment,” International journal of nanomedicine, vol. 17, pp. 2041-2067, 2022, doi: 10.2147/IJN.S355142.

[46] M. M. Joseph et al., “Exploring the margins of SERS in practical domain: An emerging diagnostic modality for modern biomedical applications,” Biomaterials, vol. 181, pp. 140-181, 2018, doi: 10.1016/j.biomaterials.2018.07.045.

[47] J. Peng and X. Liang, “Progress in research on gold nanoparticles in cancer management,” Medicine, vol. 98, no. 18, 2019, Art. no. e15311, doi: 10.1097/MD.0000000000015311.

[48] M. Mitra et al., “Novel epithelial cell adhesion molecule antibody conjugated polyethyleneimine-capped gold nanoparticles for enhanced and targeted small interfering RNA delivery to retinoblastoma cells,” Molecular vision, vol. 19, pp. 1029-1038, 2013.

[49] S.-M. Ryou et al., “Gold nanoparticle-assisted delivery of small, highly structured RNA into the nuclei of human cells,” Biochemical and biophysical research communications, vol. 416, no. 1-2, pp. 178-183, 2011, doi:10.1016/j.bbrc.2011.11.020.

[50] Y. Chen et al., “Gold Nanoparticles as Radiosensitizers in Cancer Radiotherapy,” International Journal of nanomedicine, vol. 15, pp. 9407-9430, 2020, doi: 10.2147/IJN.S272902.

[51] M. Alle et al., “Next-generation engineered nanogold for multimodal cancer therapy and imaging: a clinical perspectives,” Journal of nanobiotechnology, vol. 20, no. 1, 2022, doi:10.1186/s12951-022-01402-z.

[52] X. Zhang, X. Chen, Y.-W. Jiang, N. Ma, L.-Y. Xia, and X. Cheng, “Glutathione-depleting gold nanoclusters for enhanced cancer radiotherapy through synergistic external and internal regulations,” ACS Appl Mater Interfaces, vol. 10, pp. 10601-10606, 2018, doi: 10.1021/acsami.8b00207.

[53] D. Y. Joh et al., “Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization,” PloS one, vol. 8, no. 4, 2013, Art. no. e62425, doi: 10.1371/journal.pone.0062425.

[54] G. Cifter et al., “Targeted radiotherapy enhancement during electronic brachytherapy of accelerated partial breast irradiation (APBI) using controlled release of gold nanoparticles,” Physica medica: PM: an international journal devoted to the applications of physics to medicine and biology: official journal of the Italian Association of Biomedical Physics (AIFB) vol. 31, no. 8, pp. 1070-1074, 2015, doi: 10.1016/j.ejmp.2015.07.138.

[55] M.-Y. Chang et al., “Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice,” Cancer science, vol. 99, no. 7, pp. 1479-1484, 2008, doi: 10.1111/j.1349-7006.2008.00827.x.

[56] M. Anijdan, S. Hossein et al., “Megavoltage X-ray Dose Enhancement with Gold Nanoparticles in Tumor Bearing Mice,” International Journal of molecular and cellular medicine, vol. 2, no. 3, pp. 118-123, 2013.

[57] H. Hau et al., “Dose enhancement and cytotoxicity of gold nanoparticles in colon cancer cells when irradiated with kilo- and mega-voltage radiation,” Bioengineering & translational medicine, vol. 1, no. 1, pp. 94-102, 2016, doi: 10.1002/btm2.10007.

[58] M. Abbasian et al., “Combination of gold nanoparticles with low-LET irradiation: an approach to enhance DNA DSB induction in HT29 colorectal cancer stem-like cells,” Journal of cancer research and clinical oncology, vol. 145, no. 1, pp. 97-107, 2019, doi:10.1007/s00432-018-2769-3.

[59] Y. Liu et al., “The dependence of radiation enhancement effect on the concentration of gold nanoparticles exposed to low- and high-LET radiations,” Physica medica: PM: an international journal devoted to the applications of physics to medicine and biology: official journal of the Italian Association of Biomedical Physics (AIFB), vol. 31, no. 3, pp. 210-218, 2015, doi: 10.1016/j.ejmp.2015.01.006.

[60] M. R. Kanavi et al., “Gamma irradiation of ocular melanoma and lymphoma cells in the presence of gold nanoparticles: in vitro study,” Journal of applied clinical medical physics, vol. 19, no. 3, pp. 268-275, 2018, doi:10.1002/acm2.12336.

[61] J. B. Vines et al., “Gold Nanoparticles for Photothermal Cancer Therapy,” Frontiers in chemistry, vol. 7, 2019, Art. no. 167, doi:10.3389/fchem.2019.00167.

[62] S. Jain et al., “Gold nanoparticles as novel agents for cancer therapy,” The British journal of radiology, vol. 85, pp. 101-13, 2012, doi: 10.1259/bjr/59448833.

[63] P. Wust et al., “Hyperthermia in combined treatment of cancer,” The Lancet. Oncology, vol. 3, no. 8 pp. 487-497, 2002, doi: 10.1016/s1470-2045(02)00818-5.

[64] L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West. “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, pp. 13549-13554, 2003.

[65] J. M. Stern et al., “Efficacy of laser-activated gold nanoshells in ablating prostate cancer cells in vitro,” Journal of endourology, vol. 21, no. 8, pp. 939-943, 2007, doi: 10.1089/end.2007.0437.

[66] N. A. Koonce et al., “Combination of Gold Nanoparticle-Conjugated Tumor Necrosis Factor-α and Radiation Therapy Results in a Synergistic Antitumor Response in Murine Carcinoma Models,” International Journal of radiation oncology, biology, physics, vol. 93, no. 3, pp. 588-596, 2015, doi: 10.1016/j.ijrobp.2015.07.2275.

[67] M. Khoobchandani et al., “New Approaches in Breast Cancer Therapy Through Green Nanotechnology and Nano-Ayurvedic Medicine - Pre-Clinical and Pilot Human Clinical Investigations,” International Journal of nanomedicine, vol. 15, pp. 181-197, 2020, doi: 10.2147/IJN.S219042.




DOI: https://doi.org/10.34238/tnu-jst.6391

Các bài báo tham chiếu

  • Hiện tại không có bài báo tham chiếu
Tạp chí Khoa học và Công nghệ - Đại học Thái Nguyên
Phòng 408, 409 - Tòa nhà Điều hành - Đại học Thái Nguyên
Phường Tân Thịnh - Thành phố Thái Nguyên
Điện thoại: 0208 3840 288 - E-mail: jst@tnu.edu.vn
Phát triển trên nền tảng Open Journal Systems
©2018 All Rights Reserved