GIẢI BÀI TOÁN UC SỬ DỤNG MÔ HÌNH MILP CHO HỆ THỐNG HỖN HỢP NHIỆT ĐIỆN, ĐIỆN GIÓ VÀ TÍCH TRỮ NĂNG LƯỢNG DẠNG PIN CÓ XÉT TỔN THẤT CÔNG SUẤT LƯỚI ĐIỆN
Thông tin bài báo
Ngày nhận bài: 11/09/22                Ngày hoàn thiện: 19/10/22                Ngày đăng: 20/10/22Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] D. A. Tejada-Arango, S. Lumbreras, P. Sanchez-Martin, and A. Ramos, “Which Unit-Commitment Formulation is Best? A Comparison Framework,” IEEE Trans. Power Syst., vol. 35, no. 4, pp. 2926–2936, Jul. 2020.
[2] J. M. Arroyo and A. J. Conejo, “Multiperiod Auction for a Pool-based Electricity Market,” IEEE Trans. Power Syst., vol. 17, no. 4, pp. 1225–1231, Nov. 2002.
[3] N. V. Pham, D. H. Nguyen, and V. D. Nguyen, “A Tool for Unit Commitment Schedule in Day-Ahead in Pool based Electricity Markets,” UD-JST, vol. 6, no. 103, pp. 25–29, Jun. 2016.
[4] X. Wu, J. Zhao, and A. Conejo, “Optimal Battery Sizing for Frequency Regulation and Energy Arbitrage,” IEEE Trans. Power Deliv., vol. 37, no. 3, pp. 2016–2023, Jun. 2022.
[5] E. Quarm and R. Madani, “Scalable Security-Constrained Unit Commitment Under Uncertainty via Cone Programming Relaxation,” IEEE Trans. Power Syst., vol. 36, no. 5, pp. 4733–4744, Sep. 2021.
[6] A. L. Motto, F. D. Galiana, A. J. Conejo, and J. M. Arroyo, “Network-constrained multiperiod auction for a pool-based electricity market,” IEEE Trans. Power Syst., vol. 17, no. 3, pp. 646–653, Aug. 2002.
[7] D. A. Tejada-Arango, P. Sanchez-Martin, and A. Ramos, “Security Constrained Unit Commitment Using Line Outage Distribution Factors,” IEEE Trans. Power Syst., vol. 33, no. 1, pp. 329–337, Jan. 2018.
[8] D. Chen, S. Hou, N. Gong, W. Zhang, and H. Li, “A Chance-Constrained Two-Stage Stochastic UC Considering Uncertain Renewable Energy Output And Demand Response,” in 2018 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), Singapore, May 2018, pp. 419–424.
[9] S. Virmani, E. C. Adrian, K. Imhof, and S. Mukherjee, “Implementation of a Lagrangian relaxation based unit commitment problem,” IEEE Trans. Power Syst., vol. 4, no. 4, pp. 1373–1380, Nov. 1989.
[10] H. S. Madraswala and A. S. Deshpande, “Genetic algorithm solution to unit commitment problem,” in 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India, Jul. 2016, pp. 1–6.
[11] G. Morales-España, J. M. Latorre, and A. Ramos, “Tight and Compact MILP Formulation for the Thermal Unit Commitment Problem,” IEEE Trans. Power Syst., vol. 28, no. 4, pp. 4897–4908, Oct. 2013.
[12] C. Shang and T. Lin, “A Linear Reliability-Evaluated Unit Commitment,” IEEE Trans. Power Syst., vol. 37, no. 5, pp. 4133–4136, Sep. 2022.
[13] K. Qing, Q. Huang, Y. Du, L. Jiang, O. Bamisile, and W. Hu, “Distributionally robust unit commitment with an adjustable uncertainty set and dynamic demand response,” Energy, vol. 262, Jan. 2023, Art. no. 125434.
[14] C. Barrows, A. Bloom, A. Ehlen, J. Ikaheimo, J. Jergenson, D. Krishnamurthy, J. Lau, B. McBennett, M. O’Connell, E. Preston, A. Staid, G. Stephen, and J.-P. Watson “The IEEE Reliability Test System: A Proposed 2019 Update,” IEEE Trans. Power Syst., vol. 35, no. 1, pp. 119–127, Jan. 2020.
[15] GAMS, “General Algebraic Modeling System,” 2022. [Online]. Available: https://www.gams.com/ [Accessed July 05, 2022].
DOI: https://doi.org/10.34238/tnu-jst.6485
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu