ĐẶC ĐIỂM SINH HỌC VÀ CHIẾN LƯỢC TĂNG HOẠT ĐỘNG CỦA ADENOVIRUS ĐỂ GÂY TAN TẾ BÀO UNG THƯ
Thông tin bài báo
Ngày nhận bài: 13/09/22                Ngày hoàn thiện: 07/12/22                Ngày đăng: 20/12/22Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] C. J. Breitbach, B. D. Lichty, and J. C. Bell, “Oncolytic viruses: therapeutics with an identity crisis,” Ebio Medicine, vol. 9, pp. 31-36, 2016.
[2] Z. S. Guo, Z. Liu, S. Kowalsky, M. Feist, P. Kalinski, B. Lu et al., “Oncolytic immunotherapy: conceptual evolution, current strategies, and future perspectives,” Frontiers Immunology, vol. 8, pp. 550-555, 2017.
[3] K. Taipale, I. Liikanen, J. Juhila, R. Turkki, S. Tahtinen, M. Kankainen et al., “Chronic activation of innate immunity correlates with poor prognosis in cancer patients treated with oncolytic adenovirus,” Moleculer Therapy, vol. 24, pp. 175-183, 2016.
[4] S. E. Lawler and E. A. Chiocca, “Oncolytic virus–mediated immunotherapy: a combinatorial approach for cancer treatment,” Journal Clinical Oncology, vol. 33, pp. 2812-2814, 2015.
[5] M. C. Brown and M. Gromeier, “Oncolytic immunotherapy through tumor-specific translation and cytotoxicity of poliovirus,” Discovery Medicine, vol. 19, pp. 359-365, 2015.
[6] H. L. Kaufman, F. J. Kohlhap, and A. Zloza, “Oncolytic viruses: a new class of immunotherapy drugs,” Nature Review Drug Discovery, vol. 14, no. 9, pp. 642-662, 2015.
[7] J. J. Rojas, P. Sampath, B. Bonilla, A. Ashley, W. Hou, D. Byrd et al., “Manipu-lating TLR signaling increases the anti-tumor T cell response induced by viral cancer therapies,” Cell Report, vol. 15, pp. 264-273, 2016.
[8] J. D. Freedman, J. Hagel, E. M. Scott, I. Psallidas, A. Gupta, L. Spiers et al., “Oncolytic adenovirus expressing bispecific antibody targets T-cell cytotoxicity in cancer biopsies,” EMBO Moleculer Medicine, vol. 9, pp. 1067-1087, 2017.
[9] M. C. Brown and M. Gromeier, “Cytotoxic and immunogenic mechanisms of recombinant oncolytic poliovirus,” Current Opinion in Virology, vol. 13, pp. 81-85, 2015.
[10] F. Yu, X. Wang, Z. S. Guo, D. L. Bartlett, S. M. Gottschalk, and X. T. Song, “T-cell engager-armed oncolytic vaccinia virus significantly enhances antitumor therapy,” Molcular Therapy, vol. 22, pp. 102-111, 2014.
[11] H. Huang, Y. Liu, W. Liao, Y. Cao, Q. Liu, Y. Guo, Y. Lu, and Z. Xie, “Oncolytic adenovirus programmed by synthetic gene circuit for cancer immunotherapy,” Nat Commun, vol. 10, pp. 4795- 4801, 2019.
[12] J. R. Frost, M. Mendez, A. M. Soriano, L. Crisostomo, O. Olanubi, S. Radko, and P. Pelka, “Adenovirus 5 E1A-Mediated Suppression of p53 via FUBP1,” Journal of virology, vol. 92, pp. 105-112, 2018.
[13] L. X. Dai, J. Yang, J. M. Liu, S. Huang, B. N. Wang, H. Li, J. Yang, Z. Y. Zhao, K. Cao, and M. Y. Li, “Adenovirus-Mediated CRM197 Sensitizes Human Glioma Cells to Gemcitabine by the Mitochondrial Pathway,” Cancer biotherapy & radiopharmaceuticals, vol. 34, pp. 171-180, 2019.
[14] C. A. Fajardo, S. Guedan, L. A. Rojas, R. Moreno, M. Arias-Badia, J. De Sostoa et al., “Oncolytic adenoviral delivery of an EGFR-targeting T-cell engager improves antitumor efficacy,” Cancer Research, vol. 77, pp. 2052-2063, 2017.
[15] K. Harrington, D. J. Freeman, B. Kelly, J. Harper, and J. C. Soria, “Optimizing oncolytic virotherapy in cancer treatment,” Nature reviews, vol. 18, pp. 689-706, 2019.
[16] X. Li, P. Wang, H. Li, X. Du, M. Liu, Q. Huang et al., “The efficacy of oncolytic adenovirus is mediated by T-cell responses against virus and tumor in Syrian hamster model,” Clinical Cancer Research, vol. 23, pp. 239-249, 2017.
[17] K. Geletneky, J. P. Nuesch, A. Angelova, I. Kiprianova, J. Rommelaere, “Double-faceted mechanism of parvoviral oncosuppression,” Current Opinion Virology, vol. 13, pp. 17-24, 2015.
[18] K. H. Jung, I. K. Choi, H. S. Lee, H. H. Yan, M. K. Son, H. M. Ahn, J. Hong, C. O. Yun, and S. S. Hong, “Oncolytic adenovirus expressing relaxin (YDC002) enhances therapeutic efficacy of gemcitabine against pancreatic cancer,” Cancer letters, vol. 396, pp. 155-166, 2017.
[19] G. Marelli, A. Sica, L. Vannucci, and P. Allavena, “Inflammation as target in cancer therapy,” Currence Opinion Pharmacol, vol. 35, pp. 57-65, 2017.
[20] P. J. Ferguson, A. Sykelyk, R. Figueredo, and J. Koropatnick, “Synergistic cytotoxicity against human tumor cell lines by oncolytic adenovirus dl1520 (ONYX-015) and melphalan,” Tumori, vol. 102, pp. 31-39, 2016.
[21] R. Garcia-Carbonero, R. Salazar, I. Duran, I. Osman-Garcia, L. Paz-Ares, J. M. Bozada et al., “Phase 1 study of intravenous administration of the chimeric adenovirus enadenotucirev in patients undergoing primary tumor resection,” Journal for Immunotherapy of Cancer, vol. 5, pp. 65-71, 2017.
[22] A. Ribas, R. Dummer, I. Puzanov, A. Vanderwalde, R. H. I. Andtbacka, O. Michielin et al., “Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy,” Cell, vol. 170, pp. 1109-1119, 2017.
[23] M. C. Bourgeois-Daigneault, D. G. Roy, A. S. Aitken, N. El Sayes, N. T. Martin, O. Varette et al., “Neoadjuvant oncolytic virotherapy before surgery sensitizes triple-negative breast cancer to immune checkpoint therapy,” Science Translational Medicine, vol. 10, pp. 1641-1649, 2018.
[24] P. Darvin, S. M. Toor, V. Sasidharan Nair, and E. Elkord, “Immune checkpoint inhibitors: recent progress and potential biomarkers,” Experimental & molecular medicine, vol. 50, pp. 1-11, 2018.
[25] S. L. Ross, M. Sherman, P. L. Mcelroy, J. A. Lofgren, G. Moody, P. A. Baeuerle et al., “Bispecific T cell engager (BiTE(R)) antibody constructs can mediate bystander tumor cell killing,” PLoS One, vol. 12, pp. 234-239, 2017.
[26] L. S. Chard, E. Maniati, P. Wang, Z. Zhang, D. Gao, J. Wang et al., “A vaccinia virus armed with interleukin-10 is a promising therapeutic agent for treatment of murine pancreatic cancer,” Clinical Cancer Research, vol. 21, pp. 405-416, 2015.
[27] E. Ilett, T. Kottke, J. Thompson, K. Rajani, S. Zaidi, L. Evgin et al., “Prime-boost using separate oncolytic viruses in combination with checkpoint blockade improves anti-tumour therapy,” Gene Therapy, vol. 24, pp. 21-30, 2017.
[28] P. Wang, X. Li, J. Wang, D. Gao, Y. Li, H. Li et al., “Re-designing interleukin-12 to enhance its safety and potential as an anti-tumor immunotherapeutic agent,” Natural Communication, vol. 8, pp. 1390-1395, 2017.
[29] S. Li, F. Wang, Z. Zhai, S. Fu, J. Lu, H. Zhang, H. Guo, X. Hu, R. Li, and Z. Wang,” Rodriguez R. Synergistic effect of bladder cancer-specific oncolytic adenovirus in combination with chemotherapy,” Oncology letters, vol. 14, no. 2, pp. 2081-2088, 2017.
[30] E. Galanis, P. J. Atherton, M. J. Maurer et al., “Oncolytic measles virus expressing the sodium iodide symporter to treat drug-resistant ovarian cancer,” Cancer Research, vol. 75, pp. 22-30, 2015.
[31] D. C. Le, A. S. Ho, and L. T. Nguyen, “Measles vaccine virus: a new therapy in cancer treatment,” Journal of Military Medicine, vol. 2, pp. 175-182, 2016.DOI: https://doi.org/10.34238/tnu-jst.6502
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu