PHÁT HIỆN VÀ QUAN TRẮC THẢM HỌA MÔI TRƯỜNG SỬ DỤNG KỸ THUẬT HỌC SÂU PHÂN ĐOẠN ẢNH
Thông tin bài báo
Ngày nhận bài: 23/09/22                Ngày hoàn thiện: 03/11/22                Ngày đăng: 03/11/22Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] Z. Wang, P. Yang, H. Liang, C. Zheng, J. Yin, Y. Tian, and W. Cui, “Semantic Segmentation and Analysis on Sensitive Parameters of Forest Fire Smoke Using Smoke-Unet and Landsat-8 Imagery,” Remote Sens., vol. 14, no. 1, 2022, doi: 10.3390/rs14010045.
[2] B. Amaral, A. Bernardino, and C. Barata, “Fire and Smoke Detection in Aerial Images,” Portuguese Conference on Pattern Recognition (RecPad), October 2020, pp. 1-2.
[3] S. Frizzi, M. Bouchouicha, G. Jean-Marc, E. Moreau, and M. Sayadi, “Convolutional neural network for smoke and fire semantic segmentation,” IET Image Process, vol. 15, pp. 634–647, 2021, doi: 10.1049/ipr2.12046.
[4] M. J. Garay, D. M. Mazzoni, R. Davies, and D. Diner, “The application of support vector machines to the analysis of global datasets from MISR,” in Proceedings of the Fourth Conference on Artificial Intelligence Applications to Environmental Science, San Diego, CA, USA, January 2005, pp. 1-19.
[5] D. Mazzoni, J. A. Logan, D. Diner, R. Kahn, L. Tong, and Q. Li, “A data-mining approach toassociating MISR smoke plume heights with MODIS fire measurements,” Remote Sensing of Environment, vol. 107, pp. 138–148, 2007.
[6] D. Mazzoni, M. J. Garay, R. Davies, and D. Nelson, “An operational MISR pixel classifier using support vector machines,” Remote Sensing of Environment, vol. 107, pp. 149–158, 2007.
[7] X. L. Li, J. Wang, W. G. Song, J. Ma, L. Telesca, and Y. M. Zhang, “Automatic Smoke Detection in MODIS Satellites Data based on K-means Clustering and Fisher Linear Discrimination,” Photogramm. Eng. Remote Sens., vol. 80, pp. 971–982, 2014.
[8] X. L. Li, W. G. Song, L. Lian, and X. Wei, “Forest Fire Smoke Detection Using Back-Propagation Neural Network Based on MODIS Data,” Remote Sens., vol. 7, pp. 4473–4498, 2015.
[9] W. Su, J. Zhang, C. Yang, R. Page, T. Szinyei, C. D. Hirsch, and B. J. Steffenson, “Automatic Evaluation of Wheat Resistance to Fusarium Head Blight Using Dual Mask R-CNN Deep Learning Frameworks in Computer Vision,” Remote Sens, vol. 13, no. 1, 2021, 10.3390/rs13010026.
[10] S. Khan, K. Muhammad, T. Hussain, J. D. Ser, F. Cuzzolin, S. Bhattacharyya, Z. Akhtar, and V. H. C. de Albuquerque, “DeepSmoke: Deep learning model for smoke detection and segmentation in outdoor environments,” Expert Systems with Applications, vol. 182, no. 15, 2021, doi: 10.1016/j.eswa.2021.115125.
[11] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” 2015. [Online]. Available: https://arxiv.org/pdf/1505.04597.pdf. [Accessed September 29, 2021].
[12] Y. Bao, W. Liu, O. Gao, Z. Lin, and Q. Hu, “E-Unet++: A Semantic Segmentation Method for Remote Sensing Images,” in Proceedings of the 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Chongqing, China, 18–20 June 2021, pp. 1858–1862.
[13] X. Li, Z. Du, Y. Huang, and Z. Tan, “A deep translation (GAN) based change detection network for optical and SAR remote sensing images,” ISPRS J. Photogramm. Remote Sens., vol. 179, pp. 14–34, 2021.
[14] A. Markham, I. Ilyassov, M. Aitzhanov, M. F. Demirci, and A. M Ozbayoglu, “Deep learningbased investment strategy: Technical indicator clustering and residual blocks,” Soft Comput., vol. 25, pp. 5151–5161, 2021.
[15] S. Kastner and L. G. Ungerleider, “Mechanisms of visual attention in the human cortex,” Annu. Rev. Neurosci., vol. 23, pp. 315–341, 2000.
[16] P. Barmpoutis, K. Dimitropoulos, K. Kaza, and N. Grammalidis, “Fire detection from images using faster CNN and multidimensional texture analysis,” 2019 International Conference IEEE on Acoustics, Speech, and Signal Processing (ICASSP), 2019, pp. 8301–8305.
[17] K. Muhammad, J. Ahmad, Z. Lv, and P. Bellavista, “Efficient CNN-based deep fire detection and locating in video surveillance applications,” IEEE Transactions on Systems, People, and Cybernetics: Systems, 2018, pp. 1419–1434.
[18] Q. X. Zhang, G. H. Lin, Y. M. Zhang, G. Xu, and J. J. Wang, “Wildland forest fire smoke detection based on faster r-cnn using synthetic smoke images,” Procedia Engineering, vol. 211, pp. 441–446, 2018.
DOI: https://doi.org/10.34238/tnu-jst.6551
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu