NGHIÊN CỨU HỆ THỐNG DỊCH NGÔN NGỮ TIẾNG VIỆT-K’HO SỬ DỤNG DỊCH MÁY BẰNG NƠRON
Thông tin bài báo
Ngày nhận bài: 29/10/22                Ngày hoàn thiện: 31/03/23                Ngày đăng: 07/04/23Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
REFERENCES
[1] D. C. Le and T. T. T. Nguyen, "Vietnamese-English Translation with Transformer and Back Translation in VLSP 2020 Machine Translation Shared Task," in Proceedings of the 7th International Workshop on Vietnamese Language and Speech Processing, Hanoi, Vietnam, Association for Computational Linguistics, 2020, pp. 64–70.
[2] H. H. P. Vu, V. T. Tran, V. N. Nguyen, H. V. Dang, and P. T. Do, "Machine Translation between Vietnamese and English: an Empirical Study," Journal of Computer Science and Cybernetics, vol. 35, no. 2, pp. 147-166, 2019.
[3] N. Q. Phuoc, Y. Quan, and C.-Y. Ock, "Building a bidirectional english-vietnamese statistical machine translation system by using moses," International Journal of Computer and Electrical Engineering, vol. 8, no. 2, pp. 161-168, 2016.
[4] P. Huang, C. Wang, D. Zhou, and L. Deng, "Neural phrase-based machine translation," in CoRR, 2017.
[5] M. Cettolo, J. Niehues, S. Stuker, L. Bentivogli, R. Cattoni, and M. Federico, "The iwslt 2015 evaluation campaign," in Proceeding of the 12th International Workshop on Spoken Language Translation, 2015, pp 2-14,.
[6] H. P. Vu, V. Nguyen, V. Tran, and P. Do, "Towards state-of-the-art english-vietnamese neural machine translation," in Proceedings of the Eighth International Symposium on Information and Communication Technology, Nha Trang, 2017, pp 120-126,.
[7] H. Nguyen, L. Nguyen, P. Le, H. Nguyen, and T. Dinh, "Vietnamese-K'Ho automatic translation using statistical-based methods," Science Journal of Da Lat University, vol. 8, no. 3, pp.135-148, 2018.
[8] T. Nguyen and T. Dinh, "Vietnamese-K'Ho automatic translation using an example-based method," Science Journal of Da Lat University, vol. 6, pp.160 - 173, 2016.
[9] M-T. Luong, H. Pham, and C. D. Manning, “Effective Approaches to Attention-based Neural Machine Translation,” arXiv prePrint arXiv:1508.04025, 2015.
[10] J. Gehring, M. Auli, D. Grangier, D. Yarats, Y. N. Dauphin, “Convolutional Sequence to Sequence Learning,” arXiv prePrint arXiv:1705.03122, 2017.
[11] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey, et al., “Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation,” arXiv prePrint arXiv:1609.08144, 2016.
[12] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language Models are Unsupervised Multitask Learners,” Technical report, OpenAi, 2019.
[13] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving Language Understanding by Generative Pre-Training,” Computer Science, 2018. [Online]. Available: https://www.semanticscholar. org/paper/Improving-Language-Understanding-by-Generative-Radford-Narasimhan/cd18800a0fe0b66 8 a1cc19f2ec95b5003d0a5035. [Accessed October 05, 2022].
[14] Y. G. Nie, V. N. Hiep, and T. C. Lam, “Research and perfect the program to support handwriting processing of some ethnic minorities in the Central Highlands by TayNguyenKey software,” Science and technology research topics, DakLak, 2010.
[15] F. J. Och and H. Ney, "Improved Statistical Alignment Models," in Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics, Hong Kong, 2000, pp. 440-447,.
[16] R. Östling and J. Tiedemann, "Efficient Word Alignment with Markov Chain Monte Carlo," The Prague Bulletin of Mathematical Linguistics, vol. 106, pp. 125-146, 2016.
[17] S. Ker and J. Chang, "A Class-based Approach to Word Alignment," Computational Linguistics, vol. 23, pp. 313-343, 2002.
[18] Z.-Y. Dou and G. Neubig, "Word Alignment by Fine-tuning Embeddings on Parallel Corpora," CoRR, vol. abs/2101.08231, pp. 2112-2128, 2021.
[19] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A.M. Rush, “OpenNMT: Open-Source Toolkit for Neural Machine Translation,” arXiv prePrint arXiv:1701.02810, 2017.
[20] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg, et al. “Deep Speech 2: End-to-End Speech Recognition in English and Mandarin,” arXiv prePrint arXiv:1512.02595, 2015.
[21] Y. Deng, A. Kanervisto, J. Ling, and A. M. Rush, “Image-to-Markup Generation with Coarse-to-Fine Attention,” arXiv prePrint arXiv:1609.04938, 2016.
[22] W. Chan, N. Jaitly, Q. V. Le, and O. Vinyals, “Listen, Attend and Spell,” arXiv prePrint arXiv:1508.01211, 2015.
[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention Is All You Need,” arXiv prePrint arXiv:1706.03762, 2017.
[24] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning to Align and Translate,” arXiv prePrint arXiv:1409.0473, 2014.
DOI: https://doi.org/10.34238/tnu-jst.6818
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu