ẢNH HƯỞNG CỦA NỒNG ĐỘ ION Eu3+ LÊN CẤU TRÚC VÀ TÍNH CHẤT QUANG CỦA VẬT LIỆU SrTiO3
Thông tin bài báo
Ngày nhận bài: 03/11/22                Ngày hoàn thiện: 22/11/22                Ngày đăng: 22/11/22Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] M. T. Tran, Q. T. Do, T. Nguyen, D. A. Do, T. H. Le, V. D. Nguyen, and T. H. Pham, "Single-phase far-red-emitting ZnAl2O4:Cr3+ phosphor for application in plant growth LEDs," J. Alloys Compd., vol. 884, pp. 1–13, 2021, doi: 10.1016/j.jallcom.2021.161077.
[2] D. Q. Trung, N. V. Quang, M. T. Tran, N. V. Du, N. Tu, N. D. Hung, D. X. Viet, D. D. Anh, and P. T. Huy, "Single-composition Al3+-singly doped ZnO phosphors for UV-pumped warm white light-emitting diode applications," Dalt. Trans, vol. 50, pp. 9037-9050, 2021, doi: 10.1039/d1dt00971k.
[3] M. T. Tran, T. Nguyen, V. Q. Nguyen, D. H. Nguyen, T. H. Le, Q. T. Do, and T. H. Pham, "Excellent thermal stability and high quantum efficiency orange-red-emitting AlPO4:Eu3+ phosphors for WLED application," J. Alloys Compd., vol. 853, 2021, doi:10.1016/j.jallcom.2020.156941.
[4] Y. Zhang, L. Luo, G. Chen, Y. Liu, R. Liu, and X. Chen, "Green and red phosphor for LED backlight in wide color gamut LCD," J. Rare Earths, vol. 38, pp. 1-12, 2020, doi: 10.1016/j.jre.2019.10.005.
[5] J. Qiao, J. Zhao, Q. Liu, and Z. Xia, "Recent advances in solid-state LED phosphors with thermally stable luminescence," J. Rare Earths, vol. 37, pp. 565–572, 2019, doi: 10.1016/j.jre.2018.11.001.
[6] V. Q. Nguyen, T. H. Nguyen, T. Nguyen, Q. T. Do, D. A. Do, M. T. Tran, and T. H. Pham, "A high quantum efficiency plant growth LED by using a deep-red-emitting α-Al2O3:Cr3+ phosphor," Dalt. Trans, vol. 50, pp. 12570–12582, 2021, doi: 10.1039/d1dt00115a.
[7] L. Muresan, E. J. Popovici, F. Imre-Lucaci, R. Grecu, and E. Indrea, "Studies on Y2O3:Eu phosphor with different particle size prepared by wet chemical method," J. Alloys Compd., vol. 483, pp. 346–349, 2009, doi: 10.1016/j.jallcom.2008.08.087.
[8] Y. Shimokawa, S. Sakaida, S. Iwata, K. Inoue, S. Honda, and Y. Iwamoto, "Synthesis and characterization of Eu3+ doped CaZrO3 based perovskite type phosphors. part II: PL properties related to the two different dominant Eu3+ substitution sites," J. Lumin, vol. 157, pp. 113–118, 2015, doi: 10.1016/j.jlumin.2014.08.042.
[9] T. H. Le, T. K. Nguyen, and T. H. Pham, "Synthesis and Optical Properties of Eu2+ and Eu3+ Doped SrBP Phosphors Prepared by Using a Co-precipitation Method for White Light-Emitting Devices," J. Electron. Mater, vol. 45, pp. 3356–3360, 2016, doi:10.1007/s11664-016-4460-2.
[10] Q. Bai, S. Zhao, Z. Xu, and P. Li, "Partial cation substitution of tunable blue-cyan-emitting Ba2B2O5:Ce3+ for near-UV white LEDs," J. Am. Ceram. Soc., vol. 102, pp. 6213–6226, 2019, doi.10.1111/jace.16501.
[11] N. Luewarasirikul and J. Kaewkhao, "Light-Emitting CaMoO4:Dy3+ Phosphors for Photonic Materials : Synthesis and Luminescence Properties," AIP Conference Proceedings ,vol. 2279, pp. 1-8, 2020, doi:10.1063/5.0023233
[12] K. N. Shinde, S. J. Dhoble, N. Brahme, and A. Kumar, "Combustion synthesis of Sr6AlP5O20:Dy3+ submicron phosphor for high dose TL dosimetry," Radiat. Meas, vol. 46, pp. 1886–1889, 2011, doi: 10.1016/j.radmeas.2011.01.015.
[13] S. H. Dai, Y. F. Liu, and Y. N. Lu, "Preparation of Eu3+ doped (Y,Gd)2O3 flowers from (Y,Gd)2(CO3)3.nH2O flowerlike precursors: Microwave hydrothermal synthesis, growth mechanism and luminescence property," J. Colloid. Interface Sci., vol. 349, pp. 34–40, 2010, doi: 10.1016/j.jcis.2010.05.059.
[14] B. Wang, H. Lin, F. Huang, J. Xu, H. Chen, Z. Lin, and Y. Wang, "Non-Rare-Earth BaMgAl10-2xO17:xMn4+,xMg2+: A Narrow-Band Red Phosphor for Use as a High-Power Warm w-LED," Chem. Mater, vol. 28, 2016, doi:10.1021/acs.chemmater.6b01303.
[15] X. Yang, C. Pu, H. Qin, S. Liu, Z. Xu, and X. Peng, "Temperature-A nd Mn2+ Concentration-Dependent Emission Properties of Mn2+ doped ZnSe Nanocrystals," J. Am. Chem. Soc., vol. 141, pp. 2288–2298, 2019, doi:10.1021/jacs.8b08480.
[16] M. G. Kwak, J. H. Park, and S. H. Shon, "Synthesis and properties of luminescent Y2O3:Eu (15-25wt%) nanocrystals," Solid State Commun., vol. 130, pp. 199–201, 2004, doi:10.1016/j.ssc. 2004.01.042.
[17] E. Yang, G. Li, C. Fu, J. Zheng, X. Huang, W. Xu, and L. Li, "Eu3+ doped Y2O3 hexagonal prisms: Shape-controlled synthesis and tailored luminescence properties," J. Alloys Compd., vol. 647, pp. 648–659, 2015, doi:10.1016/j.jallcom.2015.06.016.
[18] X. Zhang, J. Zhang, J. Huang, X. Tang, and M. Gong, "Synthesis and luminescence of Eu2+ doped alkaline-earth apatites for application in white LED," J. Lumin, vol. 130, pp. 554–559, 2010, doi:10.1016/j.jlumin.2009.10.030.
[19] S. Qiu, H. Wei, M. Wang, S. Zhang, Y. Zhou, L. Xu, X. Wang, and H. Jiao, "Synthesis and photoluminescence of Mn4+ activated ternary-alkaline fluoride K2NaGaF6 red phosphor for warm-white LED application," RSC Adv., vol. 7, pp. 50396-30402, 2017, doi:10.1039/c7ra10274g.
[20] K. Kumari, R. N. Aljawfi, A. K. Chawla, R. Kumar, P. A. Alvi, A. Alshoaibi, A. Vij, F. Ahmed, M. Abu-samak, and S. Kumar, "Engineering the optical properties of Cu doped CeO2 NCs for application in white LED," Ceram. Int., vol. 46, pp. 7482–7488, 2020, doi:10.1016/j.ceramint.2019.11.246.
[21] T. Kang, S. Lee, T. Kim, and J. Kim, "Efficient Luminescence of Sr2Si5N8:Eu2+ nanophosphor and its film applications to LED and Solar cell as a downconverter," Sci. Rep, vol. 10, pp. 1-7, 2020, doi:10.1038/s41598-020-58469-7.
[22] Z. Yang, L. Yang, C. Ji, D. Xu, C. Zhang, H. Bu, X. Tan, X. Yun, and J. Sun, "Studies on luminescence properties of double perovskite deep red phosphor La2ZnTiO6:Mn4+ for indoor plant growth LED applications," J. Alloys Compd., vol. 802, pp. 628–635, 2019, doi:10.1016/j.jallcom. 2019.06.199.
[23] T. T. H. Pham, D. D. Nguyen, X. H. Vu, T. T. Tran, X. C. Nguyen, V. T. Nguyen, M. T. Pham, H. T. Van, and V. D. Phan, "Synthesis and In-Depth Study of the Mechanism of Silver Nanoplate and Nanodecahedra Growth by LED Irradiation for SERS Application," J. Electron. Mater, vol. 49, pp. 5009–5027, 2020, doi:10.1007/s11664-020-08240-5.
[24] H. Lee and W. J. Chung, "Eu2+ doped oxyfluoride glass-ceramic with nepheline as an efficient 400 nm UV-LED color converter," J. Am. Ceram. Soc., vol. 104, pp. 4024–4032, 2021, doi: 10.1111/jace.17810.
[25] T. R. Raman, Y. C. Ratnakaram, and B. D. P. Raju, "Synthesis and spectroscopic investigations on Pr3+ doped LiPbB5O9 phosphor: A blue converting red phosphor for white LEDs," Optik (Stuttg), vol. 225, pp. 1-30, 2021, doi: 10.1016/j.ijleo.2020.165758.
[26] K. Park, G. Deressa, D. Kim, J. Kim, J. Kim, and T. Kim, "AStability test of white led with bilayer structure of red InP quantum dots and yellow YAG:Ce3+ phosphor," J. Nanosci. Nanotechnol, vol. 16, pp. 1612–1615, 2016, doi:10.1166/jnn.2016.11981.
[27] X. Di, X. He, J. Jiang, P. Li, W. Xiang, X. Liang, and T. Shen, "Facile fabrication of Eu3+ activated YAG:Ce3+ glass ceramics exhibiting high thermal stability and tunable luminescence for warm white LEDs," J. Mater. Sci. Mater. Electron, vol. 28, pp. 8611–8620, 2017, doi:10.1007/s10854-017-6585-3.
[28] B. M. J. Smets, "Phosphors based on rare-earths, a new era in fluorescent lighting," Mater. Chem. Phys., vol. 16, pp. 283–299, 1987, doi: 10.1016/0254-0584(87)90103-9.
[29] R. Rajeswari, N. Islavath, M. Raghavender, and L. Giribabu, "Recent Progress and Emerging Applications of Rare Earth Doped Phosphor Materials for Dye-sensitized and Perovskite Solar Cells: A Review," Chem. Rec., vol. 19, pp. 1-25, 2019, doi: 10.1002/tcr.201900008.
[30] C. Wei, D. Xu, J. Li, A. Geng, X. Li, and J. Sun, "Synthesis and luminescence properties of Eu3+ doped a novel double perovskite Sr2YTaO6 phosphor," J. Mater. Sci. Mater. Electron, vol. 30, pp. 2864–2871, 2019, doi:10.1007/s10854-018-0563-2.
[31] G. Pan, X. Bai, W. Xu, X. Chen, D. Zhou, J. Zhu, H. Shao, Y. Zhai, B. Dong, L. Xu, and H. Song, "Impurity Ions Codoped Cesium Lead Halide Perovskite Nanocrystals with Bright White Light Emission toward Ultraviolet-White Light-Emitting Diode," ACS Appl. Mater. Interfaces, vol. 10, pp. 39040–39048, 2018, doi:10.1021/acsami.8b14275.
[32] W. Huang, Q. Liu, X. Li, Q. Zhu, L. Wang, and Q. Zhang, "Dy3+ doped BaLaMgSbO6 double perovskite highly efficient white phosphor," Ceram. Int., vol. 45, pp. 15624–15628, 2019, doi:10.1016/j.ceramint.2019.05.073.
[33] M. Abdi, V. Mahdikhah, and S. Sheibani, "Visible light photocatalytic performance of La-Fe co-doped SrTiO3 perovskite powder," Opt. Mater. (Amst), vol. 102, pp. 1-11, 2020, doi:10.1016/j.optmat. 2020.109803.
[34] C. Wei, D. Xu, Z. Yang, J. Li, X. Chen, X. Li, and J. Sun, "Synthesis and Photoluminescence Properties of Eu3+ Activated Double Perovskite Ba2YTaO6 Red Phosphor," J. Electron. Mater, vol. 48, pp. 5048–5054, 2019, doi:10.1007/s11664-019-07306-3.
[35] R. F. Gonçalves, A. P. Moura, M. J. Godinho, E. Longo, M. A. C. Machado, D. A. D. Castro, M. S. Li, and A. P. A. Marques, "Crystal growth and photoluminescence of europium-doped strontium titanate prepared by a microwave hydrothermal method," Ceram. Int., vol. 41, pp. 3549–3554, 2015, doi:10.1016/j.ceramint.2014.11.018.
[36] H. J. Jang, S. J. Park, J. H. Yang, S. M. Hong, C. K. Rhee, D. Kim, and Y. Sohn, "Photocatalytic and photoelectrocatalytic properties of Eu(III)-doped perovskite SrTiO3 nanoparticles with dopant level approaches," Mater. Sci. Semicond. Process, vol. 132, pp. 1-12, 2021, doi: 10.1016/j.mssp.2021. 105919.
[37] H. Trabelsi, M. Akl, and S. H. Akl, "Ultrasound assisted Eu3+ doped strontium titanate nanophosphors: Labeling agent useful for visualization of latent fingerprints," Powder Technol., vol. 384, pp. 70–81, 2021, doi:10.1016/j.powtec.2021.02.006.
DOI: https://doi.org/10.34238/tnu-jst.6870
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu