PHÂN TÍCH DẠNG HOÁ HỌC CỦA NIKEN TRONG ĐẤT BÃI THẢI VÀ ĐẤT RUỘNG Ở KHU VỰC MỎ Pb/Zn, TỈNH THÁI NGUYÊN
Thông tin bài báo
Ngày nhận bài: 27/12/22                Ngày hoàn thiện: 08/02/23                Ngày đăng: 08/02/23Tóm tắt
Để đánh giá đầy đủ và tổng quát hơn mức độ ô nhiễm của các kim loại nặng trong đất cần tiến hành phân tích dạng hóa học của chúng. Nồng độ Ni trong 12 mẫu đất bãi thải và đất ruộng ở khu vực bãi thải của mỏ Pb/Zn làng Hích, tỉnh Thái Nguyên đã được phân tích bằng phương pháp phổ khối plasma cảm ứng (ICP-MS). Dạng hóa học của Ni trong đất được chiết theo quy trình chiết liên tục Tessier. Các chỉ số đánh giá môi trường như chỉ số tích lũy địa chất (Igeo) và mã đánh giá rủi ro (RAC) đã được áp dụng để đánh giá mức độ ô nhiễm của Ni trong đất. Kết quả cho thấy, Ni tồn tại trong các mẫu đất bãi thải chủ yếu ở dạng cặn dư (F5) > dạng Fe/Mn oxit (F3) > dạng cacbonat (F2) > dạng trao đổi (F1) ~ dạng liên kết với chất hữu cơ (F4), trong khi Ni tồn tại trong các mẫu đất ruộng là F5 > F2 > F3 > F4 > F1. Chỉ số Igeo của Ni trong các mẫu đất đều âm (Igeo < 0), cho thấy nồng độ Ni trong các mẫu đất ở mức không bị ô nhiễm. Trong khi đó, chỉ số RAC cho thấy Ni trong các mẫu đất ở mức từ nguy cơ ô nhiễm nhẹ đến nguy cơ ô nhiễm nặng (10%< RAC < 30%), có 3/7 mẫu đất ruộng ở mức ô nguy cơ ô nhiễm nặng (RAC > 30%).
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] H. Ali and E. Khan, “Environmental chemistry in the twenty-first century,” Environmental Chemistry Letters, vol. 15, no. 2. pp. 329–346, 2017, doi: 10.1007/s10311-016-0601-3.
[2] H. Ali, E. Khan, and M. A. Sajad, “Phytoremediation of heavy metals-Concepts and applications,” Chemosphere, vol. 91, no. 7, pp. 869–881, 2013, doi: 10.1016/j.chemosphere.2013.01.075.
[3] M. A. Hashem, M. S. Nur-A-Tomal, N. R. Mondal, and M. A. Rahman, “Hair burning and liming in tanneries is a source of pollution by arsenic, lead, zinc, manganese and iron,” Environ. Chem. Lett., vol. 15, no. 3, pp. 501–506, 2017, doi: 10.1007/s10311-017-0634-2.
[4] E. Merian, “Introduction on Environmental Chemistry and Global Cycles o Chromium, Nickel, Cobalt, Beryllium, Arsenic, Cadmium and Selenium, and their Derivatives,” Toxicol. Environ. Chem., vol. 8, no. 1, pp. 9–38, 1984, doi: 10.1080/02772248409357038.
[5] A. Hazrat, K. Ezzat, and I. Ikram, “Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation,” J. Chem., vol. 2019, pp. 1–14, 2019, doi: 10.1155/2019/6730305.
[6] J. Briffa, E. Sinagra, and R. Blundell, “Heavy metal pollution in the environment and their toxicological effects on humans,” Heliyon, vol. 2020, pp. 1–26, 2020.
[7] M. Wieczorek-Dabrowska, A. Tomza-Marciniak, B. Pilarczyk, and A. Balicka-Ramisz, “Roe and red deer as bioindicators of heavy metals contamination in north-western Poland,” Chem. Ecol., vol. 29, no. 2, pp. 100–110, 2013, doi: 10.1080/02757540.2012.711322.
[8] E. Denkhaus and K. Salnikow, “Nickel essentiality, toxicity, and carcinogenicity,” Crit. Rev. Oncol. Hematol., vol. 42, no. 1, pp. 35–56, 2002, doi: 10.1016/S1040-8428(01)00214-1.
[9] F. Torres, M. Das Graças, M. Melo, and A. Tosti, “Management of contact dermatitis due to nickel allergy: An update,” Clinical, Cosmetic and Investigational Dermatology, vol. 2. pp. 39–48, 2009, doi: 10.2147/ccid.s3693.
[10] G. Schwarz and B. Aa, “Nickel in human health and disease,” Met. Ions Life Sci., vol. 13, pp. 295–320, 2013.
[11] S. Fernández, T. Cotos-Yáñez, J. Roca-Pardiñas, and C. Ordóñez, “Geographically Weighted Principal Components Analysis to assess diffuse pollution sources of soil heavy metal: Application to rough mountain areas in Northwest Spain,” Geoderma, vol. 311, pp. 120-129, 2018, doi: 10.1016/j. geoderma.2016.10.012.
[12] P. Lazo, E. Steinnes, F. Qarri, S. Allajbeu, S. Kane, T. Stafilov, M.V. Frontasyeva, and H. Harmens, “Origin and spatial distribution of metals in moss samples in Albania: A hotspot of heavy metal contamination in Europe,” Chemosphere, vol. 190, pp. 337–349, 2018, doi: 10.1016/j.chemosphere.2017.09.132.
[13] T.X. Vuong and V. P. Dang, “Chemical fraction analysis and assessment of manganese in tailing and argricutural soils sampled in the lead and zinc mine area at Hich village, Dong Hy district, Thai Nguyen province,” TNU J. Sci. Technol., vol. 227, no. 08, pp. 165–173, 2022.
[14] X. T. Vuong, L. D. Vu, A. T. T. Duong, H. T. Duong, T. H. T. Hoang, M. N. T. Luu, and T. B. Minh, “Speciation and environmental risk assessment of heavy metals in soil from a lead/zinc mining site in Vietnam ,” Int. J. Environ. Sci. Technol., vol. 6, pp. 1–16, 2022.
[15] T. X. Vuong, J. Stephen, T. B. Minh, T. T. T. Nguyen, T. H. Duong, and D. T. N. Pham, “Chemical Fractionations of Lead and Zinc in the Contaminated Soil Amended with the Blended Biochar/Apatite,” Molecules, vol. 27, no. 22, 2022, doi: 10.3390/molecules27228044.
[16] A. Tessier, P. G. C. Campbell, and M. Bisson, “Sequential Extraction Procedure for the Speciation of Particulate Trace Metals,” Analytical Chemistry, vol. 51, no. 7, pp. 844–851, 1979, doi: 10.1021/ac50043a017.
[17] S. Cheng, G. Liu, C. Zhou, and R. Sun, “Chemical speciation and risk assessment of cadmium in soils around a typical coal mining area of China,” Ecotoxicol. Environ. Saf., vol. 160, pp. 67–74, 2018, doi: 10.1016/j.ecoenv.2018.05.022.
[18] D. Qiao, G. Wang, X. Li, S. Wang, and Y. Zhao, “Pollution, sources and environmental risk assessment of heavy metals in the surface AMD water, sediments and surface soils around unexploited Rona Cu deposit, Tibet, China,” Chemosphere, vol. 248, 2020, Art. no. 125988, doi: 10.1016/j.chemosphere.2020.125988.
[19] V. M. Dang, S. Joseph, H. T. Van, T. L. A. Mai, T. M. H. Duong, S. Weldon, P. Munroe, D. Mitchell, and S. Taherymoosavi, “Immobilization of heavy metals in contaminated soil after mining activity by using biochar and other industrial by-products: the significant role of minerals on the biochar surfaces,” Environmental Technology (United Kingdom), vol. 6, pp. 1–16, 2018, doi: 10.1080/09593330.2018.1468487.
[20] US Environmental Protection Agency, "Microwave assisted acid digestion of sediments, sludges, soils, and oils," US EPA Method 30151, 1998.
[21] AOAC - Association of Official Agricultural Chemists, “Appendix F: guidelines for standard method performance requirements,” 2016. [Online]. Available: http://www.eoma.aoac.org/app_f.pdf. [Accessed December 20, 2022].
[22] M. Barbieri, “The Importance of Enrichment Factor (EF) and Geoaccumulation Index (Igeo) to Evaluate the Soil Contamination,” J. Geol. Geophys., vol. 5, no. 1, pp. 1–4, 2016, doi: 10.4172/2381-8719.1000237.
[23] G. Muller, “Index of geoaccumulation in sediments of the Rhine River,” GeoJournal, vol. 2, pp. 108–118, 1969.
[24] S. Lu, Y. Wang, Y. Teng, and X. Yu, “Heavy metal pollution and ecological risk assessment of the paddy soils near a zinc-lead mining area in Hunan,” Environ. Monit. Assess., vol. 187, no. 10, pp. 1–12, 2015, doi: 10.1007/s10661-015-4835-5.
[25] L. M. Huang, C. B. Deng, N. Huang, and X. J. Huang, “Multivariate statistical approach to identify heavy metal sources in agricultural soil around an abandoned Pb-Zn mine in Guangxi Zhuang Autonomous Region, China,” Environ. Earth Sci., vol. 68, no. 5, pp. 1331–1348, 2013, doi: 10.1007/s12665-012-1831-8.
[26] Y. Du, L. Chen, P. Ding, L. Liu, Q. He, B. Chen, and Y. Duan, “Different exposure profile of heavy metal and health risk between residents near a Pb-Zn mine and a Mn mine in Huayuan county, South China,” Chemosphere, vol. 216, pp. 352–364, 2019, doi: 10.1016/j.chemosphere.2018.10.142.
[27] S. C. Obiora, A. Chukwu, and T. C. Davies, “Heavy metals and health risk assessment of arable soils and food crops around Pb-Zn mining localities in Enyigba, southeastern Nigeria,” J. African Earth Sci., vol. 116, pp. 182–189, 2016, doi: 10.1016/j.jafrearsci.2015.12.025.
DOI: https://doi.org/10.34238/tnu-jst.7170
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu