ĐÁNH GIÁ PHÂN LOẠI CÁC BỆNH VỀ MẮT BẰNG RESNET TRÊN BỘ DỮ LIỆU HÌNH ẢNH CHỤP VÕNG MẠC THU THẬP TỪ BỆNH VIỆN THÁI BÌNH
Thông tin bài báo
Ngày nhận bài: 01/04/23                Ngày hoàn thiện: 05/05/23                Ngày đăng: 08/05/23Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] R. Sarki, K. Ahmed, H. Wang, and Y. Zhang, "Automated detection of mild and multi-class diabetic eye diseases using deep learning," Health Information Science and Systems, vol. 8, no. 1, pp. 1-9, 2020, doi: 10.1007/s13755-020-00125-5.
[2] C. Mai, "Together to solve the shortage of medical personnel," (in Vietnamese), Oct. 2022. [Online]. Available: https://dangcongsan.vn/giao-duc/chung-tay-giai-quyet-tinh-trang-thieu-hut-nhan-su-nganh-y-te-621422.html. [Accessed April 15, 2023].
[3] M. P. Gupta, A. A. Herzlich, T. Sauer, and C. C. Chan, "Retinal Anatomy and Pathology," Developments in Ophthalmology, vol. 55, pp. 7-17, 2016, doi: 10.1159/000431128.
[4] O. Bernabé, E. Acevedo, A. Acevedo, R. Carreño, and S. Gómez, “Classification of Eye Diseases in Fundus Images,” in IEEE Access, vol. 9, pp. 101267-101276, 2021, doi: 10.1109/ACCESS. 2021.3094649.
[5] M. Smaida and S. Yaroshchak, “Bagging of Convolutional Neural Networks for Diagnostic of Eye Diseases,” in International Conference on Computational Linguistics and Intelligent Systems, vol. 2604, pp. 715–729, 2020.
[6] K. Prasad, P. S. Sajith, M. Neema, L. Madhu, and P. N. Priya, “Multiple eye disease detection using deep neural network,” in TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON), 2019, pp. 2148–2153.
[7] M. Londhe, “Classification of eye diseases using hybrid CNN-RNN models,” MSc Research Project, Data Analytics, School of Computing - National College of Ireland, 2021.
[8] C. Li, J. Ye, J. He, S. Wang, Y. Qiao, and L. Gu, “Dense correlation network for automated multi-label ocular disease detection with paired colour fundus photographs,” in 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), 2020, pp. 1–4.
[9] T.-Y. Su, Z.-Y. Liu, and D.-Y. Chen, “Tear film break-up time measurement using deep convolutional neural networks for screening dry eye disease,” IEEE Sensors Journal, vol. 18, no. 16, pp. 6857–6862, 2018.
[10] A. H. Vyas, M. A. Mehta, K. Kotecha, S. Pandya, M. Alazab, and T. R. Gadekallu, “Tear film breakup time-based dry eye disease detection using convolutional neural network,” Neural Computing and Applications, 2022, doi: https://doi.org/10.1007/s00521-022-07652-0.
[11] M. Berrimi and A. Moussaoui, “Deep learning for identifying and classifying retinal diseases,” in 2020 2nd International Conference on Computer and Information Sciences (ICCIS), 2020, pp. 1–6.
[12] R. Bhadra and S. Kar, “Retinal disease classification from optical coherence tomographical scans using multilayered convolution neural network,” in 2020 IEEE Applied Signal Processing Conference (ASPCON), 2020, pp. 212–216.
[13] S. Karthikeyan, P. K. Sanjay, R. J. Madhusudan, S. K. Sundaramoorthy, P. K. K Namboori, “Detection of multi-class retinal diseases using artificial intelligence: An expeditious learning using deep CNN with minimal data,” Biomed Pharmacol J., vol. 12 no. 3, pp.1577–1586, 2019.
[14] R. Yasashvini, M. S. R. Vergin, R. Panjanathan, G. Jasmine, and L. Anbarasi, “Diabetic retinopathy classification using CNN and hybrid deep convolutional neural networks,” Symmetry, vol. 14, 2022, Art. no. 1932.
[15] J. He, C. Li, J. Ye, Y. Qiao, and L. Gu, “Multi-label ocular disease classification with a dense correlation deep neural network,” Biomedical Signal Processing and Control, vol. 63, 2021, Art. no. 102167.
[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE Conference on computer vision and pattern recognition, 2016, pp. 770–778.
[17] A. A. Ardakani, A. R. Kanafi, U. R. Acharya, N. Khadem, and A. Mohammadi, “Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks,” Computers in Biology and Medicine, vol. 121, 2020, Art. no. 103795.
DOI: https://doi.org/10.34238/tnu-jst.7644
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu