NÂNG CAO HIỆU QUẢ ĐIỀU KHIỂN ROBOT, SỬ DỤNG HỌC TĂNG CƯỜNG KẾT HỢP HỌC SÂU
Thông tin bài báo
Ngày nhận bài: 13/04/23                Ngày hoàn thiện: 24/05/23                Ngày đăng: 24/05/23Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement Learning in Robotics: A Survey,” International Journal of Robotics Research, vol. 32, no. 11, pp. 1238-1274, 2013.
[2] R. Liu, F. Nageotte, and P. Zanne, “Deep reinforcement learning for control of robotic manipulation: A review,” Journal of Robotics, vol. 10, no. 1, pp. 1-14, 2020.
[3] A. Barzegar and D.-J. Lee, “Deep Reinforcement Learning-Based Adaptive Controller for Trajectory Tracking and Altitude Control of an Aerial Robot,” Applied Sciences, vol. 9, pp. 1-8, 2022.
[4] V. Minh, K. Kavukcuoglu, D. Silver, and A. Graves, “Playing Atari with Deep Reinforcement Learning,” Noron Information Proccessing Systems, vol. 26, pp. 2674-2682, 2013.
[5] V. Mnih, K. Kavukcuoglu, D. Silver, and A. Graves, “Human level Control through Deep Reinforcement Learning,” Nature, vol. 518, pp. 529-533, 2015.
[6] H. V. Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning with Double Q-Learning,” in AAAI Conference on Artifical Intelligence (AAAI), 2016, pp. 2094-2100.
[7] C. A. W. Y. Wang, “A Deep Reinforcement Learning Method for Robot Dynamic Path Planning,” IEEE Access, vol. 8, pp. 33817-33826, 2020.
[8] Ó. Pérez-Gil, R. Barea, E. López-Guillén, L. M. Bergasa, C. Gómez-Huélamo, R. Gutiérrez, and A. Díaz-Díaz, “Deep reinforcement learning based control for Autonomous Vehicles in CARLA,” Multimed Tools Appl, vol. 81, no. 3, pp. 3553–3576, 2022
[9] T. Schaul, “Prioritzed Experience Replay,” in ICLR, 2016, pp.1-8.
[10] K. Simonyan and A. Zisserman, “Very deep convolutional network for large-scale image recognition,” in The 3rd International Conference on Learning Representations(ICLR2015), 2015, pp. 1-14.
DOI: https://doi.org/10.34238/tnu-jst.7733
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu