PHÂN TÍCH PHÂN ĐOẠN HOÁ HỌC CỦA STRONTI (Sr) TRONG ĐẤT Ở KHU VỰC MỎ Pb/Zn LÀNG HÍCH, TỈNH THÁI NGUYÊN
Thông tin bài báo
Ngày nhận bài: 29/04/23                Ngày hoàn thiện: 08/06/23                Ngày đăng: 08/06/23Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] H. Baltas, M. Sirin, E. Gökbayrak, and A. E. Ozcelik, “A case study on pollution and a human health risk assessment of heavy metals in agricultural soils around Sinop province, Turkey,” Chemosphere, vol. 241, 2020, Art. no. 125015.
[2] L. Ma, T. Xiao, Z. Ning, Y. Liu, H. Chen, and J. Peng, “Pollution and health risk assessment of toxic metal (loid) s in soils under different land use in sulphide mineralized areas,” Sci. Total Environ., vol. 724, 2020, Art. no. 138176.
[3] X. Hang, H. Wang, J. Zhou, C. Ma, C. Du, and X. Chen, “Risk assessment of potentially toxic element pollution in soils and rice (Oryza sativa) in a typical area of the Yangtze River Delta,” Environ. Pollut., vol. 157, no. 8–9, pp. 2542–2549, 2009.
[4] M. I. Dar, I. D. Green, and F. A. Khan, “Trace metal contamination: Transfer and fate in food chains of terrestrial invertebrates,” Food Webs, vol. 20, 2019, Art. no. e00116.
[5] J. Briffa, E. Sinagra, and R. Blundell, “Heavy metal pollution in the environment and their toxicological effects on humans,” Heliyon, vol. 2020, pp. 1–26, 2020.
[6] V. Höllriegl and H. Z. München, “Strontium in the Environment and Possible Human Health Effects,” in Encyclopedia of Environmental Health, 2011, pp. 268–275, doi: 10.1016/B978-0-444-52272-6.00638-3.
[7] A. Burger and I. Lichtscheidl, “Strontium in the environment: Review about reactions of plants towards stable and radioactive strontium isotopes,” Sci. Total Environ., vol. 653, pp. 1458–1512, 2019, doi: 10.1016/j.scitotenv.2018.10.312.
[8] R. R. Brooks, Geobotany and biogeochemistry in mineral exploration. Harper & Row, 1972.
[9] O. A. Chadwick, L. A. Derry, C. R. Bern, and P. M. Vitousek, “Changing sources of strontium to soils and ecosystems across the Hawaiian Islands,” Chem. Geol., vol. 267, no. 1–2, pp. 64–76, 2009, doi: 10.1016/j.chemgeo.2009.01.009.
[10] S. Dubchak, “Distribution of strontium in soil: interception, weathering, speciation, and translocation to plants,” in Behaviour of Strontium in Plants and the Environment, D. Gupta and C. Walther (eds), 2018, pp. 33–43.
[11] X. T. Vuong, L. D. Vu, A. T. T. Duong, H. T. Duong, T. H. T. Hoang, M. N. T. Luu, T. N. Nguyen, V. D. Nguyen, T. T. T. Nguyen, T. H. Van, and T. B. Minh, “Speciation and environmental risk assessment of heavy metals in soil from a lead/zinc mining site in Vietnam,” Int. J. Environ. Sci. Technol., vol. 20, no. 5, pp.5295-5310, 2023..
[12] D. Agrelli, A. G. Caporale, and P. Adamo, “Assessment of the bioavailability and speciation of heavy metal(loid)s and hydrocarbons for risk-based soil remediation,” Agronomy, vol. 10, no. 9, 2020, doi: 10.3390/AGRONOMY10091440.
[13] I. Elmayel, J. M. Esbrí, G. O. Efrén, E. M. García-Noguero, Z. Elouear, B. Jalel, A. Farieri, N. Roqueñí, P. Cienfuegos, and P. Higueras, “Evolution of the speciation and mobility of Pb, Zn and Cd in relation to transport processes in a mining environment,” Int. J. Environ. Res. Public Health, vol. 17, no. 14, pp. 1–16, 2020, doi: 10.3390/ijerph17144912.
[14] H. Z. Panseriya, H. B. Gosai, A. O. Sankhwal, B. K. Sachaniya, D. J. Gavali, and B. P. Dave, “Distribution, speciation and risk assessment of heavy metals: geochemical exploration of Gulf of Kachchh, Gujarat, India,” Environ. Earth Sci., vol. 79, no. 10, pp. 1–10, 2020, doi: 10.1007/s12665-020-08972-x.
[15] W. Xu, S. Hou, Y. Li, M.A. Khan, W. Luo, Z. Chen, Y. Li, X. Wu, Z. Ye, and D. Liu, “Bioavailability and Speciation of Heavy Metals in Polluted Soil as Alleviated by Different Types of Biochars,” Bull. Environ. Contam. Toxicol., vol. 104, no. 4, pp. 484–488, 2020, doi: 10.1007/s00128-020-02804-1.
[16] M. Uchimiya, D. Bannon, H. Nakanishi, M. B. McBride, M. A. Williams, and T. Yoshihara, “Chemical Speciation, Plant Uptake, and Toxicity of Heavy Metals in Agricultural Soils,” J. Agric. Food Chem., vol. 68, no. 46, pp. 12856–12869, 2020, doi: 10.1021/acs.jafc.0c00183.
[17] V. M. Dang, S. Joseph, H. T. Van, T. L. A. Mai, T. M. H. Duong, S. Weldon, P. Munroe, D. Mitchell, and S. Taherymoosavi, “Immobilization of heavy metals in contaminated soil after mining activity by using biochar and other industrial by-products: the significant role of minerals on the biochar surfaces,” Environmental Technology (United Kingdom), vol. 40, no. 24, pp. 3200-3215, 2019, doi: 10.1080/09593330.2018.1468487.
[18] T. X. Vuong and V.P. Dang, “Chemical analysis and assessment of manganese contamination in landfill soil and agricultural land in the lead-zinc mine area of Hich village, Dong Hy district, Thai Nguyen province,” (in Vietnamese), TNU J. Sci. Technol., vol. 227, no. 08, pp. 165–173, 2022.
[19] T. X. Vuong and T. H. Nguyen, “Chemical analysis of nickel in waste dump soil and field soil in Pb/Zn mine area, Thai Nguyen province,” (in Vietnamese), TNU J. Sci. Technol., vol. 228, no. 02, pp. 225–233, 2023.
[20] U. S. E. P. Agency, “Microwave assisted acid digestion of sediments, sludges, soils, and oils,” US EPA Method 30151, 1998.
[21] A. Tessier, P. G. C. Campbell, and M. Bisson, “Sequential Extraction Procedure for the Speciation of Particulate Trace Metals,” Analytical Chemistry, vol. 51, no. 7. pp. 844–851, 1979, doi: 10.1021/ac50043a017.
[22] AOAC, “Appendix F: Guidelines for Standard Method Performance Requirements,” in AOAC Official Methods of Analysis, AOAC International, 2016.
[23] T. X. Vuong, J. Stephen, T. T. T. Nguyen, V. Cao, and D. T. N. Pham, “Insight into the Speciation of Heavy Metals in the Contaminated Soil Incubated with Corn Cob-Derived Biochar and Apatite,” Molecules, vol. 28, no. 5, 2023, Art. no. 2225.
[24] T. X. Vuong, J. Stephen, T. B. Minh, T. T. T. Nguyen, T. H. Duong, and D. T. N. Pham, “Chemical Fractionations of Lead and Zinc in the Contaminated Soil Amended with the Blended Biochar/Apatite,” Molecules, vol. 27, no. 22, 2022, doi: 10.3390/molecules27228044.
[25] S. Bravo, J.A. Amorós, C. Pérez-De-Los-Reyes, F.J. García, M.M. Moreno, M. Sánchez-Ormeño, and P. Higueras, “Influence of the soil pH in the uptake and bioaccumulation of heavy metals (Fe, Zn, Cu, Pb and Mn) and other elements (Ca, K, Al, Sr and Ba) in vine leaves, Castilla-La Mancha (Spain),” J. Geochemical Explor., vol. 174, pp. 79–83, 2017, doi: 10.1016/j.gexplo.2015.12.012.
[26] A. Nurzhanova, V. Pidlisnyuk, K. Abit, C. Nurzhanov, B. Kenessov, T. Stefanovska, and L. Erickson, “Comparative assessment of using Miscanthus× giganteus for remediation of soils contaminated by heavy metals: a case of military and mining sites,” Environ. Sci. Pollut. Res., vol. 26, pp. 13320–13333, 2019.
[27] A. Oyebamiji, A. Amanambu, T. Zafar, A. J. P. Adewumi, and D. S. Akinyemi, “Expected impacts of active mining on the distribution of heavy metals in soils around Iludun-Oro and its environs, Southwestern Nigeria,” Cogent Environmental Science, vol. 4, no. 1, 2018, doi: 10.1080/23311843. 2018.1495046.
[28] M. Anju and D. K. Banerjee, “Multivariate statistical analysis of heavy metals in soils of a Pb-Zn mining area, India,” Environ. Monit. Assess., vol. 184, no. 7, pp. 4191–4206, 2012, doi: 10.1007/s10661-011-2255-8.
[29] K. K. Turekian and K. H. Wedepohl, “Distribution of the elements in some major units of the earth’s crust,” Bull. Geol. Soc. Am., vol. 72, no. 2, pp. 175–192, 1961, doi: 10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2.
DOI: https://doi.org/10.34238/tnu-jst.7865
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu