ĐẶC ĐIỂM TRÌNH TỰ NUCLEOTIDE CỦA VÙNG ITS PHÂN LẬP TỪ CÂY VÚ BÒ (Ficus simplicissima LOUR.) THU THẬP TẠI THÁI NGUYÊN | Thủy | TNU Journal of Science and Technology

ĐẶC ĐIỂM TRÌNH TỰ NUCLEOTIDE CỦA VÙNG ITS PHÂN LẬP TỪ CÂY VÚ BÒ (Ficus simplicissima LOUR.) THU THẬP TẠI THÁI NGUYÊN

Thông tin bài báo

Ngày nhận bài: 20/07/23                Ngày hoàn thiện: 30/08/23                Ngày đăng: 13/09/23

Các tác giả

1. Vũ Thị Thu Thủy Email to author, Trường Đại học Sư phạm - ĐH Thái Nguyên
2. Lục Văn Dương, Trường Trung học cơ sở Ký Phú, huyện Đại Từ, tỉnh Thái Nguyên
3. Chu Hoàng Mậu, Trường Đại học Sư phạm - ĐH Thái Nguyên

Tóm tắt


Cây Vú bò (Ficus simplicissima Lour.) chứa một số chất có hoạt tính sinh học có tác dụng chống oxy hoá, chống ung thư, trị bệnh tiểu đường… Hiện nay, việc nhận diện loài Vú bò (F. simplicissima) còn gặp nhiều khó khăn do đặc điểm hình thái, giải phẫu tương tự một số loài thuộc chi Ficus. Vì vậy, việc sử dụng chỉ thị DNA hỗ trợ định danh loài F. simplicissima là rất cần thiết. Trong nghiên cứu này, vùng ITS phân lập từ mẫu Vú bò thu thập tại Thái Nguyên bằng phương pháp PCR, giải trình tự nucleotide và phân tích phát sinh chủng loại của các loài thuộc chi Ficus. Kết quả cho thấy trình tự vùng ITS của mẫu Vú bò thu tại Thái Nguyên có kích thước 814 bp, có tỷ lệ tương đồng cao (97,46%) so với loài Ficus hirta. Phân tích sự phát sinh chủng loại dựa trên trình tự nucleotide của vùng ITS đã cho thấy trình tự ITS là ứng cử viên mã vạch DNA tiềm năng có thể được sử dụng để phân biệt các loài thuộc chi Ficus.

Từ khóa


Vú bò (Ficus simplicissima); Mã vạch DNA; ITS; Định danh loài; Phát sinh chủng loại

Toàn văn:

PDF

Tài liệu tham khảo


[1] C. C. Berg, “Classification and distribution of Ficus,” Experientia, vol. 45, no. 7, pp. 605-611, 1989, doi: 10.1007/BF01975677.

[2] T. L. Do, Vietnamese medicinal plants and medicine taste. Medical Publishing House, Hanoi, 2004.

[3] S. Murugesu, J. Selamat, and V. Perumal, “Phytochemistry, Pharmacological Properties, and Recent Applications of Ficus benghalensis and Ficus religiosa,” Plants, vol. 10, no. 12, 2021, Art. no. 2749, doi: 10.3390/plants10122749.

[4] V. H. Ha, “DNA barcode: Principle and applied,” 2015. [Online]. Available: genbank.org.vn. [Accessed June 12, 2023].

[5] S. Antil, J. S. Abraham, S. Sripoorna, S. Maurya, J. Dagar, S. Makhija, P. Bhagat, R. Gupta, U. Sood, R. Lal, and R. Toteja, “DNA barcoding, an effective tool for species identification: a review,” Molecular Biology Reports, vol. 50, pp. 761-775, 2023, doi: 10.1007/s11033-022-07843-9.

[6] M. W. Chase, D. E. Soltis, R. G. Olmstead, D. Morgan, D. H. Les, B. D. Mishler, and M. R. Duvall, “Phylogenetics of seed plants: An analysis of nucleotide sequences from the plastid gene rbcL,” Annals of the Missouri Botanical Garden, vol. 80, no. 3, pp. 528-580, 1993.

[7] C. Lepcha and B. Sharma, “Diversity of Ficus L. (Moraceae) and ITS uses in Sikkim Himalayas (India),” Int. J. Bot. Res., vol. 11, no. 2, pp. 39-56, Nov. 2021.

[8] J. Shaw, E. B. Lickey, J. T. Beck, S. B. Farmer, W. Liu, J. Miller, and R. L. Small, “The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis,” American Journal of Botany, vol. 92, no. 1, pp. 142-166, 2005.

[9] K. Tamura and M. Nei, “Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees,” Molecular Biology and Evolution, vol. 10, pp. 512-526, 1993.

[10] B. G. Baldwin, “Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: An example from the Compositae,” Molecular Phylogenetics and Evolution, vol. 1, no. 1, pp. 3-16, 1992.

[11] T. Mullineux and G. Hausner, “Evolution of rDNA ITS1 and ITS2 sequences and RNA secondary structures within members of the fungal genera Grosmannia and Leptographium,” Fungal Genet Biol., vol. 46, pp. 855-867, 2009, doi: 10.1016/j.fgb.2009.08.001.

[12] N. R. Henrik, E. Kristiansson, M. Ryberg, N. Hallenberg, and K.-H. Larsson, “Intraspecific ITS variability in the kingdom fungi as expressed in the international sequence databases and ITS implications for molecular species identification,” Evol Bioinforma, vol. 4, pp. 193-201, 2008.

[13] T. T. T. Vu, V. T. Vu, T. T. H. Nguyen, T. H. Tran, and. H. M. Chu, “The morphological, anatomical characteristics and antimicrobial albility of Ficus simplicissima plants,” TNU J. Sci. Technol., vol. 227, no. 01, pp. 138-145, 2022, doi: 10.34238/tnu-jst.5470.

[14] J. J. Doyle and J. L. Doyle, “A Rapid DNA isolation procedure for small quantities of fresh leaf tissue,” Phytochem Bull, vol. 19, pp. 11-15, 1987.

[15] H. M. Chu, P. H. Hoang, and H. Q. Nguyen, Bioinformatics. Thai Nguyen University Publishing House, 2019.

[16] N. Ronsted, G. D. Weiblen, J. M. Cook, N. Salamin, C. A. Machado, and V. Savolainen, “Ficus hirta isolate FHI-69 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence,” GenBank: AY730127.1, 2006. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/AY730127. [Accessed June 12, 2023].

[17] N. Ronsted, “Ficus glandulifera isolate GLA-84 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence,” GenBank: EU091646.1, 2015. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/EU091646.1. [Accessed June 12, 2023].

[18] N. Ronsted, G. D. Weiblen, J. M. Cook, N. Salamin, C. A. Machado, and V. Savolainen, “Ficus chartacea isolate FCH-68 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence,” GenBank: AY730126.1, 2006. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/AY730126.1. [Accessed June 12, 2023].

[19] N. Ronsted, G. D. Weiblen, J. M. Cook, N. Salamin, C. A. Machado, and V. Savolainen (2006), “Ficus gul isolate FGU-74 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence,” GenBank: AY730132.1, 2006. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/AY730132.1. [Accessed June 12, 2023].

[20] N. Ronsted, “Ficus ampelas isolate AMP-97 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence,” GenBank: EU091659.1, 2012. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/EU091659.1. [Accessed June 12, 2023].

[21] N. Ronsted, “Ficus henryi isolate HEN-77 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence,” GenBank: EU091639.1, 2012. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/EU091639.1. [Accessed June 12, 2023].

[22] N. Ronsted, “Ficus endospermifolia isolate END-81 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence,” GenBank: EU091643.1, 2012. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/EU091643.1. [Accessed June 12, 2023].

[23] N. Ronsted, “Ficus ischnopoda isolate FIS-64 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence,” GenBank: AY730122.1, 2006. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/AY730122.1. [Accessed June 12, 2023].

[24] N. Ronsted, “Ficus aspera isolate ASP-98 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence,” GenBank: EU091660.1, 2006. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/ EU091660.1. [Accessed June 12, 2023].

[25] N. Ronsted, G. D. Weiblen, J. M. Cook, N. Salamin, C. A. Machado, and V. Savolainen, “Ficus cordata subsp. salicifolia isolate FCO-2 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence,” GenBank: AY730060.1, 2006. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/ AY730060.1. [Accessed June 12, 2023].

[26] N. Ronsted, “Ficus sarawakensis isolate SAR-95 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence,” GenBank: EU091657.1, 2015. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/ EU091657.1. [Accessed June 12, 2023].

[27] N. Ronsted, “Ficus subulata isolate SUB-115 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence,” GenBank: EU091677.1, 2012. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/ EU091677.1. [Accessed June 12, 2023].

[28] N. Ronsted, G. D. Weiblen, J. M. Cook, N. Salamin, C. A. Machado, and V. Savolainen, “Ficus pachystemon isolate FPA-61 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence,” GenBank: AY730119.1, 2006. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/ AY730119.1. [Accessed June 12, 2023].

[29] N. Ronsted, G. D. Weiblen, J. M. Cook, N. Salamin, C. A. Machado, and V. Savolainen, “Ficus coronata isolate FCO-73 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence,” GenBank: AY730131.1, 2006. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/ AY730131.1. [Accessed June 12, 2023].

[30] N. Ronsted, G. D. Weiblen, J. M. Cook, N. Salamin, C. A. Machado, and V. Savolainen, “Ficus oleifolia isolate FOL-66 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence,” GenBank: AY730124.1, 2006. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/ AY730124.1. [Accessed June 12, 2023].

[31] N. Ronsted, “Ficus vasculosa isolate VAS-10 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence,” GenBank: EU091572.1, 2015. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/EU091572.1. [Accessed June 12, 2023].

[32] J. Felsenstein, “Confidence limits on phylogenies: An approach using the bootstrap,” Evolution, vol. 39, pp. 783-791, 1985.

[33] S. Kumar, G. Stecher, M. Li, C. Knyaz, and K. Tamura, “MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms,” Molecular Biology and Evolution, vol. 35, pp. 1547-1549, 2018.




DOI: https://doi.org/10.34238/tnu-jst.8364

Các bài báo tham chiếu

  • Hiện tại không có bài báo tham chiếu
Tạp chí Khoa học và Công nghệ - Đại học Thái Nguyên
Phòng 408, 409 - Tòa nhà Điều hành - Đại học Thái Nguyên
Phường Tân Thịnh - Thành phố Thái Nguyên
Điện thoại: 0208 3840 288 - E-mail: jst@tnu.edu.vn
Phát triển trên nền tảng Open Journal Systems
©2018 All Rights Reserved