MÔ HÌNH KHÁNG KHÁNG SINH VÀ ĐẶC ĐIỂM PHÂN TỬ CỦA Staphylococcus aureus KHÁNG METHICILLIN PHÂN LẬP TỪ CÁC BỆNH NHÂN BỊ MỤN NGOẠI TRÚ Ở THÀNH PHỐ CẦN THƠ, VIỆT NAM | Xuân | TNU Journal of Science and Technology

MÔ HÌNH KHÁNG KHÁNG SINH VÀ ĐẶC ĐIỂM PHÂN TỬ CỦA Staphylococcus aureus KHÁNG METHICILLIN PHÂN LẬP TỪ CÁC BỆNH NHÂN BỊ MỤN NGOẠI TRÚ Ở THÀNH PHỐ CẦN THƠ, VIỆT NAM

Thông tin bài báo

Ngày nhận bài: 19/08/23                Ngày hoàn thiện: 28/09/23                Ngày đăng: 28/09/23

Các tác giả

1. Bùi Thị Thu Xuân, Viện Công nghệ sinh học và Thực phẩm - Đại học Cần Thơ
2. Võ Kim Ngân, Viện Công nghệ sinh học và Thực phẩm - Đại học Cần Thơ
3. Huỳnh Nguyễn Diễm Trang, Viện Công nghệ sinh học và Thực phẩm - Đại học Cần Thơ
4. Nguyễn Tăng Phú, Viện Công nghệ sinh học và Thực phẩm - Đại học Cần Thơ
5. Trần Thị Thanh Khương, Viện Công nghệ sinh học và Thực phẩm - Đại học Cần Thơ
6. Nguyễn Thị Liên Email to author, Viện Công nghệ sinh học và Thực phẩm - Đại học Cần Thơ

Tóm tắt


Nghiên cứu này nhằm xác định đặc điểm của các chủng S. aureus kháng methicillin lưu hành trên da của những người bị mụn. Các chủng S. aureus được sàng lọc tính kháng methicillin bằng các phương pháp bao gồm, oxacillin agar (OA), khuếch tán đĩa cefoxitin (CDD) và PCR phát hiện gen mecA. Các chủng MRSA dương tính với mecA được kiểm tra sự hiện diện của gen Panton-Valentine leukocidin (PVL) và phân loại dựa trên Staphylococcal cassette chromosome mec (SCCmec). Ba mươi bảy chủng S. aureus được phân lập từ 78 mẫu phết da. Mười tám chủng được xác định là dương tính với gen mecA. Các phương pháp OA và CDD cho thấy độ nhạy thấp hơn PCR trong sàng lọc MRSA. Mười sáu chủng MRSA phân lập được ghi nhận là đa kháng thuốc. Các chủng phân lập cho thấy tỷ lệ cao về kiểu hình kháng clindamycin, gentamycin, erythromycin và linezolid. Tám chủng MRSA mang gen tổng hợp PVL. Trong dịch tễ học phân tử của MRSA, chiếm ưu thế nhất là SCCmec loại II và III. Các chủng còn lại là SCCmec loại IV. Do đó, sự lây lan của MRSA đa kháng thuốc với sự đa dạng di truyền có thể gây lo ngại về sức khỏe cộng đồng. Nghiên cứu này chỉ ra tính cấp thiết của việc xác định tính kháng kháng sinh và đặc điểm dịch tễ của MRSA trong điều trị và kiểm soát sự lây lan của mầm bệnh này.

Từ khóa


Mụn; Đa kháng thuốc; Kháng methicillin; Panton-Valentine leucocidin; Phân loại SCCmec

Toàn văn:

PDF (English)

Tài liệu tham khảo


[1] Y. E. Chen, M. A. Fischbach, and Y. Belkaid, “Skin microbiota-host interactions,” Nature, vol. 553, no. 7689, pp. 427-436, 2018.

[2] N. N. Schommer and R. L. Gallo, “Structure and function of the human skin microbiome,” Trends Microbiol, vol. 21, no. 12, pp. 660-668, 2013.

[3] R. E. Becker and J. B. Wardenburg, “Staphylococcus aureus and the skin: a longstanding and complex interaction,” Skinmed, vol. 13, no. 2, pp. 111-120, 2015.

[4] M. Z. David and R. S. Daum, “Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic,” Clin Microbiol Rev, vol. 23, no. 3, pp. 616-687, 2010.

[5] G. R. Delost, M. E. Delost, J. Armile, and J. Lloyd, “Staphylococcus aureus carriage rates and antibiotic resistance patterns in patients with acne vulgaris,” J Am Acad Dermatol, vol. 74, no. 4, pp. 673-678, 2016.

[6] D. S. Jo, C. P. Montgomery, S. Yin, S. Boyle-Vavra, and R. S. Daum, “Improved oxacillin treatment outcomes in experimental skin and lung infection by a methicillin-resistant Staphylococcus aureus isolate with a vraSR operon deletion,” Antimicrob Agents Chemother, vol. 55, no. 6, pp. 2818-2823, 2011.

[7] M. Bassetti, F. Del Puente, L. Magnasco, and D. R. Giacobbe, “Innovative therapies for acute bacterial skin and skin-structure infections (ABSSSI) caused by methicillin-resistant Staphylococcus aureus: advances in phase I and II trials,” Expert Opin Investig Drugs, vol. 29, no. 5, pp. 495-506, 2020.

[8] J. Liu, D. Chen, B. M. Peters, L. Li, B. Li, Z. Xu, and M. E. Shirliff, “Staphylococcal chromosomal cassettes mec (SCCmec): A mobile genetic element in methicillin-resistant Staphylococcus aureus,” Microb Pathog, vol. 101, no. 56-67, pp. 56-67, 2016.

[9] I. M. Gould, “Antibiotics, skin and soft tissue infection and meticillin-resistant Staphylococcus aureus: cause and effect,” Int J Antimicrob Agents, vol. 34, no. 1, pp. 8-11, 2009

[10] A. S. Lee, H. de Lencastre, J. Garau, J. Kluytmans, S. Malhotra-Kumar, A. Peschel, and S. Harbarth, “Methicillin-resistant Staphylococcus aureus,” Nat Rev Dis Primers, vol. 4, no. 18033, p. 18033, 2018.

[11] L. R. Thurlow, G. S. Joshi, and A. R. Richardson, “Virulence strategies of the dominant USA300 lineage of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA),” FEMS Immunol Med Microbiol, vol. 65, no. 1, pp. 5-22, 2012.

[12] A. L. Angelette, L. L. Rando, R. D. Wadhwa, A. A. Barras, B. M. Delacroix, N. C. Talbot, S. Ahmadzadeh, S. Shekoohi, E. M. Cornett, A. M. Kaye, and A. D. Kaye, “Tetracycline-, Doxycycline-, Minocycline-Induced Pseudotumor Cerebri and Esophageal Perforation,” Adv Ther, vol. 40, no. 4, pp. 1366-1378, 2023.

[13] T. J. Hatlen and L. G. Miller, “Staphylococcal Skin and Soft Tissue Infections,” Infect Dis Clin North Am, vol. 35, no. 1, pp. 81-105, 2021.

[14] S. Lakhundi and K. Zhang, “Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology,” Clin Microbiol Rev, vol. 31, no. 4, pp. e00020-18, 2018.

[15] H. Xu and H. Li, “Acne, the Skin Microbiome, and Antibiotic Treatment,” Am J Clin Dermatol, vol. 20, no. 3, pp. 335-344, 2021.

[16] D. J. Geha, J. R. Uhl, C. A. Gustaferro, and D. H. Persing, “Multiplex PCR for identification of methicillin-resistant staphylococci in the clinical laboratory,” J Clin Microbiol, vol. 32, no. 7, pp. 1768-1772, 1994.

[17] Clinical and Laboratory Standards Institute, Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. CLSI supplement M100, Wayne, PA: Clinical and Laboratory Standards Institute, 2020.

[18] W. P. Chen and T. T. Kuo, “A simple and rapid method for the preparation of gram-negative bacterial genomic DNA,” Nucleic Acids Res, vol. 21, no. 9, p. 2260, 1993.

[19] S. Jarraud, C. Mougel, J. Thioulouse, G. Lina, H. Meugnier, F. Forey, X. Nesme, J. Etienne, and F. Vandenesch, “Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease,” Infect Immun, vol. 70, no. 2, pp. 631-641, 2002.

[20] K. Boye, M. D. Bartels, I. S. Andersen, J. A. Møller, and H. Westh, “A new multiplex PCR for easy screening of methicillin-resistant Staphylococcus aureus SCCmec types I-V,” Clin Microbiol Infect, vol. 13, no. 7, pp. 725-727, 2007.

[21] K. H. Schleifer and J. A. Bell, “Family VIII: Staphylococcaceae. Genus I: Staphylococcus,” in Bergey's Manual of Systematic Bacteriology Volume 3: The Firmicutes, P. Vos, G. M. Garrity, D. Jones, N. R. Krieg, W. Ludwig, F. A. Rainey, K. H. Schleifer, W. B. Whitman, Eds. New York: Springer New York, 2009, pp. 392-421.

[22] P. M. Schlievert, K. L. Strandberg, Y. C. Lin, M. L. Peterson, and D. Y. Leung, “Secreted virulence factor comparison between methicillin-resistant and methicillin-sensitive Staphylococcus aureus, and its relevance to atopic dermatitis,” J Allergy Clin Immunol, vol. 125, no. 1, pp. 39-49, 2010.

[23] H. F. Chambers, “Methicillin-resistant Staphylococcus aureus. Mechanisms of resistance and implications for treatment,” Postgrad Med, vol. 109, no. 2, pp. 43-50, 2001.

[24] S. J. Peacock and G. K. Paterson, “Mechanisms of Methicillin Resistance in Staphylococcus aureus,” Annu Rev Biochem, vol. 84, pp. 577-601, 2015.

[25] S. M. Maalej, F. M. Rhimi, M. Fines, B. Mnif, R. Leclercq, and A. Hammami, “Analysis of borderline oxacillin-resistant Staphylococcus aureus (BORSA) strains isolated in Tunisia,” J Clin Microbiol, vol. 50, no. 10, pp. 3345-3348, 2012.

[26] F. Khorvash, F. Abdi, H. H. Kashani, F. F. Naeini, and T. Narimani, “Staphylococcus aureus in Acne Pathogenesis: A Case-Control Study”, N Am J Med Sci, vol. 4, no. 11, pp. 573-576, 2012.

[27] B. Kot, K. Wierzchowska, M. Piechota, and A. Grużewska, “Antimicrobial Resistance Patterns in Methicillin-Resistant Staphylococcus aureus from Patients Hospitalized during 2015-2017 in Hospitals in Poland,” Med Princ Pract, vol. 29, no. 1, pp. 61-68, 2020.

[28] S. L. Davis, M. B. Perri, S. M. Donabedian, C. Manierski, A. Singh, D. Vager, N. Z. Haque, K. Speirs, R. R. Muder, B. Robinson-Dunn, M. K. Hayden, and M. J. Zervos, “Epidemiology and outcomes of community-associated methicillin-resistant Staphylococcus aureus infection,” J Clin Microbiol, vol. 45, no. 6, pp. 1705-1711, 2007.

[29] M. Sugawara-Mikami, H. Kaneko, H. Sasaki, N. Sagawa, T. Kambara, and H. Nakaminami, “Clinical features and antimicrobial treatment of skin infections caused by Panton-Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus,” J Dermatol, vol. 49, no. 12, pp. 1338-1342, 2022.

[30] M. Vestergaard, D. Frees, and H. Ingmer, “Antibiotic Resistance and the MRSA Problem,” Microbiol Spectr, vol. 7, no. 2, 2019, doi: 10.1128/microbiolspec.GPP3-0057-2018.

[31] X. Sun, Z. W. Lin, X. X. Hu, W. M. Yao, B. Bai, H. Y. Wang, D. Y. Li, Z. Chen, H. Cheng, W. G. Pan, M. G. Deng, G. J. Xu, H. P. Tu, J. W. Chen, Q. W. Deng, Z. J. Yu, and J. X. Zheng, “Biofilm formation in erythromycin-resistant Staphylococcus aureus and the relationship with antimicrobial susceptibility and molecular characteristics,” Microb Pathog, vol. 124, pp. 47-53, 2018.

[32] M. Wali, M. S. Shah, T. U. Rehman, H. Wali, M. Hussain, L. Zaman, F. U. Khan, and A. H. Mangi, “Detection of linezolid resistance cfr gene among MRSA isolates,” J Infect Public Health, vol. 15, no. 10, pp. 1142-1146, 2022.

[33] Q. Hu, H. Cheng, W. Yuan, F. Zeng, W. Shang, D. Tang, W. Xue, J. Fu, R. Zhou, J. Zhu, J. Yang, Z. Hu, J. Yuan, X. Zhang, Q. Rao, S. Li, Z. Chen, X. Hu, X. Wu, and X. Rao, “ Panton-Valentine leukocidin (PVL)-positive health care-associated methicillin-resistant Staphylococcus aureus isolates are associated with skin and soft tissue infections and colonized mainly by infective PVL-encoding bacteriophages,” J Clin Microbiol, vol. 53, no. 1, pp. 67-72, 2015.

[34] F. S. Cavalcante, S. Saintive, D. C. Ferreira, A. B. Rocha Silva, L. C. Guimarães, B. S. Braga, E. Dios Abad, M. Ribeiro, and K. R. Netto Dos Santos, “Methicillin-resistant Staphylococcus aureus from infected skin lesions present several virulence genes and are associated with the CC30 in Brazilian children with atopic dermatitis,” Virulence, vol. 12, no. 1, pp. 260-269, 2021.

[35] R. Sunagar, N. R. Hegde, G. J. Archana, A. Y. Sinha, K. Nagamani, and S. Isloor, “Prevalence and genotype distribution of methicillin-resistant Staphylococcus aureus (MRSA) in India,” J Glob Antimicrob Resist, vol. 7, pp. 46-52, 2016.

[36] A. A. Bitrus, Z. Zunita, S. Khairani-Bejo, S. Othman, and N. A. Ahmad Nadzir, “Staphylococcal cassette chromosome mec (SCCmec) and characterization of the attachment site (attB) of methicillin resistant Staphylococcus aureus (MRSA) and methicillin susceptible Staphylococcus aureus (MSSA) isolates,” Microb Pathog, vol. 123, pp. 323-329, 2018.

[37] D. Alon, F. Abd-Elkadir, M. Chowers, and Y. Paitan, “MRSA SCCmec epidemiology in Israel: development and implementation of an MRSA SCCmec typing strategy,” Eur J Clin Microbiol Infect Dis, vol. 30, no. 11, pp. 1443-1452, 2011.

[38] K. Hiramatsu, T. Ito, S. Tsubakishita, T. Sasaki, F. Takeuchi, Y. Morimoto, Y. Katayama, M. Matsuo, K. Kuwahara-Arai, T. Hishinuma, and T. Baba, “Genomic Basis for Methicillin Resistance in Staphylococcus aureus,” Infect Chemother, vol. 45, no. 2, pp. 117-136, 2012.




DOI: https://doi.org/10.34238/tnu-jst.8589

Các bài báo tham chiếu

  • Hiện tại không có bài báo tham chiếu
Tạp chí Khoa học và Công nghệ - Đại học Thái Nguyên
Phòng 408, 409 - Tòa nhà Điều hành - Đại học Thái Nguyên
Phường Tân Thịnh - Thành phố Thái Nguyên
Điện thoại: 0208 3840 288 - E-mail: jst@tnu.edu.vn
Phát triển trên nền tảng Open Journal Systems
©2018 All Rights Reserved