TỰ ĐỘNG PHÂN LOẠI TÍN HIỆU ECG SỬ DỤNG MÔ HÌNH HỌC SÂU
Thông tin bài báo
Ngày nhận bài: 24/08/23                Ngày hoàn thiện: 17/10/23                Ngày đăng: 17/10/23Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] D. S. Tawfik, J. Profit, T. I. Morgenthaler, et al., "Physician burnout, well-being, and work unit safety grades in relationship to reported medical errors," Mayo Clinic Proceedings, vol. 93, no. 11, pp. 1571–1580, 2018, doi: 10.1016/j.mayocp.2018.05.014.
[2] C. P. West, M. M. Huschka, P. J. Novotny, et al., "Association of perceived medical errors with resident distress and empathy: a prospective longitudinal study," Jama, vol. 296, no. 9, pp. 1071–1078, 2006, doi: 10.1001/jama.296.9.1071.
[3] G. D. Clifford, C. Liu, B. Moody, et al., "AF classification from a short single lead ECG recording: The PhysioNet/computing in cardiology challenge 2017," in Proc. Computing in Cardiology (CinC), Rennes, France, 2017, pp. 1–4, doi: 10.22489/CinC.2017.065-469.
[4] T. Teijeiro, C. A. García, D. Castro, et al., "Arrhythmia classification from the abductive interpretation of short single-lead ECG records," in Proc. Computing in Cardiology (CinC), Rennes, France, 2017, pp. 1–4, doi: 10.22489/CinC.2017.166-054.
[5] M. Zabihi, A. B. Rad, A. K. Katsaggelos, et al., "Detection of atrial fibrillation in ECG hand-held devices using a random forest classifier," in Proc. Computing in Cardiology (CinC), Rennes, France, 2017, pp. 1–4, doi: 10.22489/CinC.2017.069-336.
[6] S. Datta, C. Puri, A. Mukherjee, et al., "Identifying normal, AF and other abnormal ECG rhythms using a cascaded binary classifier," in Proc. Computing in Cardiology (CinC), Rennes, France, 2017, pp. 1–4, doi: 10.22489/CinC.2017.173-154.
[7] S. Hong, M. Wu, Y. Zhou, et al., "ENCASE: An ENsemble ClASsifiEr for ECG classification using expert features and deep neural networks," in Proc. Computing in Cardiology (CinC), Rennes, France, 2017, pp. 1–4, doi: 10.22489/CinC.2017.178-245.
[8] F. Liu, C. Liu, L. Zhao, et al., "An open access database for evaluating the algorithms of electrocardiogram rhythm and morphology abnormality detection," Journal of Medical Imaging and Health Informatics, vol. 8, no. 7, pp. 1368–1373, 2018, doi:10.1166/jmihi.2018.2442.
[9] T. M. Chen, C. H. Huang, E. S. Shih, et al., "Detection and classification of cardiac arrhythmias by a challenge-best deep learning neural network model," Iscience, vol. 23, no. 3, pp. 1–7, 2020, doi: 10.1016/j.isci.2020.100886.
[10] G. K. Andrikopoulos, P. E. Dilaveris, D. J. Richter, et al., "Increased variance of P wave duration on the electrocardiogram distinguishes patients with idiopathic paroxysmal atrial fibrillation," Pacing and Clinical Electrophysiology, vol. 23, no. 7, pp. 1127–1132, 2000, doi: 10.1111/j.1540-8159.2000.tb00913.x.
[11] K. Aytemir, N. ÖZER, E. Atalar, et al., "P wave dispersion on 12‐lead electrocardiography in patients with paroxysmal atrial fibrillation," Pacing and Clinical Electrophysiology, vol. 23, no. 7, pp. 1109–1112, 2000, doi: 10.1111/j.1540-8159.2000.tb00910.x.
[12] S. Ladavich and B. Ghoraani, "Rate-independent detection of atrial fibrillation by statistical modeling of atrial activity," Biomedical Signal Processing and Control, vol. 18, pp. 274–281, 2015, doi: 10.1016/j.bspc.2015.01.007.
[13] J. Lian, L. Wang, and D. Muessig, "A simple method to detect atrial fibrillation using RR intervals," The American journal of cardiology, vol. 107, no. 10, pp. 1494–1497, 2011, doi: 10.1016/j.amjcard.2011.01.028.
[14] C. Huang, S. Ye, H. Chen, et al., "A novel method for detection of the transition between atrial fibrillation and sinus rhythm," IEEE Transactions on Biomedical Engineering, vol. 58, no. 4, pp. 1113–1119, 2010, doi: 10.1109/TBME.2010.2096506.
[15] R. Couceiro, P. Carvalho, J. Henriques, et al., "Detection of atrial fibrillation using model-based ECG analysis," in Proc. IEEE 19th Int. Conf. on pattern recognition, pp. 1–5, 2008, doi: 10.1109/ICPR.2008.4761755.
[16] S. Babaeizadeh, R. E. Gregg, E. D. Helfenbein, et al., "Improvements in atrial fibrillation detection for real-time monitoring," Journal of electrocardiology, vol. 42, no. 6, pp. 522–526, 2009, doi: 10.1016/j.jelectrocard.2009.06.006.
[17] S. Asgari, A. Mehrnia, and M. Moussavi, "Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine," Computers in biology and medicine, vol. 60, pp. 132–142, 2015, doi: 10.1016/j.compbiomed.2015.03.005.
[18] X. Xu, S. Wei, C. Ma, et al., "Atrial fibrillation beat identification using the combination of modified frequency slice wavelet transform and convolutional neural networks," Journal of Healthcare Engineering, pp. 1–8, 2018, doi: 10.1155/2018/2102918.
[19] Y. Xia, N. Wulan, K. Wang, et al., "Detecting atrial fibrillation by deep convolutional neural networks," Computers in Biology and Medicine, vol. 93, pp. 84-92, 2018, doi: 10.1016/j.compbiomed.2017.12.007.
[20] R. Salloum and C. C. J. Kuo, "ECG-based biometrics using recurrent neural networks," in Proc. IEEE Inter. Conf. Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 2017, pp. 2062-2066, doi: 10.1109/ICASSP.2017.7952519.
[21] M. Kachuee, S. Fazeli, and M. Sarrafzadeh, "ECG Heartbeat Classification: A Deep Transferable Representation," in Proc. IEEE Inter. Conf. healthcare informatics (ICHI), New York, NY, USA, 2018, pp. 443-444, doi: 10.1109/ICHI.2018.00092.
[22] K. Weimann and T. O. Conrad, "Transfer learning for ECG classification," Scientific reports, vol. 11, no. 1, 2021, doi: 10.1038/s41598-021-84374-8.
[23] N. Strodthoff, P. Wagner, T. Schaeffter, et al., "Deep learning for ECG analysis: Benchmarks and insights from PTB-XL," IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 5, pp. 1519-1528, 2020, doi: 10.1109/JBHI.2020.3022989.
[24] A. Mostayed, J. Luo, X. Shu, et al., "Classification of 12-Lead ECG Signals with Bi-Directional LSTM Network,” 2018. Online. Available: http://arxiv.org/abs/1811.02090. [Accessed July 15, 2023].
[25] J.R.G. de Santana, M.G.F. Costa, and C.F.F.C. Filho, "A New Approach to Classify Cardiac Arrythmias Using 2D Convolutional Neural Networks," in Proc. IEEE 43rd Annu. Int. Conf. IEEE Eng. Med. Biol. (EMBC), 2021, pp. 566-570, doi: 10.1109/EMBC46164.2021.9630938.
[26] M. B. Alkmim, R. M. Figueira, M. S. Marcolino, et al., "Improving patient access to specialized health care: the Telehealth Network of Minas Gerais, Brazil," Bulletin of the World Health Organization, vol. 90, pp. 373-378, 2012, doi: 10.2471/BLT.11.099408.
[27] G.Huang, Z. Liu, L. V. D. Maaten, et al., "Densely connected convolutional networks," in Proc. IEEE Conf. computer vision and pattern recognition (CVPR), Honolulu, HI, USA, 2017, pp. 2261-2269, doi: 10.1109/CVPR.2017.243.
[28] Z. Yu, V. Ramanarayanan, D. Suendermann-Oeft, et al., "Using bidirectional LSTM recurrent neural networks to learn high-level abstractions of sequential features for automated scoring of non-native spontaneous speech, " in 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), Scottsdale, AZ, USA, 2015, pp. 338-345, doi: 10.1109/ASRU.2015.7404814.
[29] Z. C. Lipton, J. Berkowitz, and C. Elkan, "A critical review of recurrent neural networks for sequence learning," arXiv preprint arXiv:1506.00019, doi: 10.48550/arXiv.1506.00019.
DOI: https://doi.org/10.34238/tnu-jst.8628
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu