VẬT LIỆU BIẾN HÓA CÓ KHẢ NĂNG ĐIỀU KHIỂN CƠ HỌC CHO HẤP THỤ ĐA BĂNG TẦN
Thông tin bài báo
Ngày nhận bài: 31/08/23                Ngày hoàn thiện: 03/11/23                Ngày đăng: 03/11/23Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett., vol. 100, no. 20, May 2008, Art. no. 207402.
[2] Z. Duan, X. Tang, Z. Wang, Y. Zhang, X. Chen, M. Chen, and Y. Gong, “Observation of the reversed Cherenkov radiation,” Nat. Commun., vol. 8, no. 1, Mar. 2017, Art. no. 14901.
[3] N. Seddon and T. Bearpark, “Observation of the Inverse Doppler Effect,” Science, vol. 302, no. 5650, pp. 1537–1540, Nov. 2003.
[4] V. G. Veselago, “The electrodynamics of sbstances with simultaneously negative values of and ,” Sov. Phys. Uspekhi, vol. 10, no. 4, pp. 509–514, Apr. 1968.
[5] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett., vol. 84, no. 18, pp. 4184–4187, May 2000.
[6] Y. I. Abdulkarima, L. Denga, H. Luoa, S. Huanga, M. Karaaslanc, O. Altıntas, M. Bakırd, F. F. Muhammadsharife, H. N.Awl, C.Sabah, and K. S. L. Al-badri, “Design and study of a metamaterial based sensor for the application of liquid chemicals detection,” J. Mater. Res. Technol., vol. 9, no. 5, pp. 10291–10304, Sep. 2020.
[7] L. Ma, D. Chen, W. Zheng, J. Li, S. Zahra, Y. Liu, Y. Zhou, Y. Huang, and G. Wen, “Advanced Electromagnetic Metamaterials for Temperature Sensing Applications,” Front. Phys., vol. 9, p. 657790, Apr. 2021.
[8] A. Sadeqi, H. R. Nejad, and S. Sonkusale, “Low-cost metamaterial-on-paper chemical sensor,” Opt. Express, vol. 25, no. 14, Jul. 2017, Art. no. 16092.
[9] S. Haxha, F. AbdelMalek, F. Ouerghi, M. D. B. Charlton, A. Aggoun, and X. Fang, “Metamaterial Superlenses Operating at Visible Wavelength for Imaging Applications,” Sci. Rep., vol. 8, no. 1, Oct. 2018, Art. no. 16119.
[10] D. Shan, H. Wang, K. Cao, and J. Zhang, “Wireless power transfer system with enhanced efficiency by using frequency reconfigurable metamaterial,” Sci. Rep., vol. 12, no. 1, Jan. 2022, Art. no. 331.
[11] W.C. Harris and D. S. Ricketts, “Maximum gain enhancement in wireless power transfer using anisotropic metamaterials,” Sci Rep., vol.13, 2023, Art. no. 7726.
[12] G. P. E. Persis, J. J. Paul, T. B. Mary, and R. C. Joy, “A compact tilted split ring multiband metamaterial absorber for energy harvesting applications,” Mater. Today Proc., vol. 56, pp. 368–372, 2022.
[13] A. Elsharabasy, M. Bakr, and M. J. Deen, “Wide-angle, wide-band, polarization-insensitive metamaterial absorber for thermal energy harvesting,” Sci. Rep., vol. 10, no. 1, Oct. 2020, Art. no. 16215.
[14] K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express, vol. 20, no. 1, Jan. 2012, Art. no. 635.
[15] J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep., vol. 7, no. 1, Jul. 2017, Art. no. 6740.
[16] D. Hu, T. Meng, H. Wang, Y. Ma, and Q. Zhu, “Ultra-narrow-band terahertz perfect metamaterial absorber for refractive index sensing application,” Results Phys., vol. 19, Dec. 2020, Art. no. 103567.
[17] Y. I. Abdulkarim, O. Altintas, A. S. Karim, H. N. Awl, F. F. Muhammadsharif, F. Ӧ. Alkurt, M. Bakir, B. Appasani, M. Karaaslan, and J. Dong, “Highly Sensitive Dual-Band Terahertz Metamaterial Absorber for Biomedical Applications: Simulation and Experiment,” ACS Omega, vol. 7, no. 42, pp. 38094–38104, Oct. 2022.
[18] J.-F. Lv, C. Ding, F.-Y. Meng, J.-Q. Han, T. Jin, and Q. Wu, “A Tunable Metamaterial Absorber Based on Liquid Crystal with the Compact Unit cell and the Wideband Absorption,” Liq. Cryst., vol. 48, no. 10, pp. 1438–1447, Aug. 2021.
[19] M. Lei, N. Feng, Q. Wang, Y. Hao, S. Huang, and K. Bi, “Magnetically tunable metamaterial perfect absorber,” J. Appl. Phys., vol. 119, no. 24, Jun. 2016, Art. no. 244504.
[20] J. Ning, K. Chen, W. Zhao, J. Zhao, T. Jiang, and Y. Feng, “An Ultrathin Tunable Metamaterial Absorber for Lower Microwave Band Based on Magnetic Nanomaterial,” Nanomaterials, vol. 12, no. 13, Jun. 2022, Art. no. 2135.
[21] Y. Shen, J. Zhang, Y. Pang, L. Zheng, J. Wang, H. Ma, and S. Qu, “Thermally Tunable Ultra-wideband Metamaterial Absorbers based on Three-dimensional Water-substrate construction,” Sci. Rep., vol. 8, no. 1, Mar. 2018, Art. no. 4423.
[22] T. Wu, W. Li, S. Chen, and J. Guan, “Wideband frequency tunable metamaterial absorber by splicing multiple tuning ranges,” Results Phys., vol. 20, Jan. 2021, Art. no. 103753.
[23] F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, Ư. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett., vol. 106, no. 9, Mar. 2015, Art. no. 091907.
[24] J. Kim, H. Jeong, and S. Lim, “Mechanically actuated frequency reconfigurable metamaterial absorber,” Sens. Actuators Phys., vol. 299, Nov. 2019, Art. no. 111619.
[25] T. L. Pham, X. K. Bui, S. T. Bui, D. H. Le, V. L. Le, D. L. Vu, and T. T. Nguyen “Origami-based stretchable bi-functional metamaterials: reflector and broadband absorber,” J. Phys. Appl. Phys., vol. 54, no. 16, Apr. 2021, Art. no. 165111.
[26] 3DEXPERIENCE Company, “CST Studio suite electromagnetic field simulation software,” [Online]. Available: https://www.3ds.com/products-services/simulia/products/cst-studio-suite/. [Accessed Nov. 1, 2023].
[27] S. Jung, Y. J. Kim, Y. J. Yoo, J. S. Hwang, B. X. Khuyen, L.-Y. Chen, and Y. P. Lee, “High-Order Resonance in a Multiband Metamaterial Absorber,” J. Electron. Mater., vol. 49, no. 3, pp. 1677–1688, Mar. 2020.
[28] X. Huang, C. Lu, C. Rong, Z. Hu, and M. Liu, “Multiband Ultrathin Polarization-Insensitive Terahertz Perfect Absorbers With Complementary Metamaterial and Resonator Based on High-Order Electric and Magnetic Resonances,” IEEE Photonics J., vol. 10, no. 6, pp. 1–11, Dec. 2018.
[29] Y. Cheng, Z. Cheng, X. Mao, and R. Gong, “Ultra-Thin Multi-Band Polarization-Insensitive Microwave Metamaterial Absorber Based on Multiple-Order Responses Using a Single Resonator Structure,” Materials, vol. 10, no. 11, Oct. 2017, Art. no. 1241.
[30] J. S. Hwang, Y. J. Kim, Y. J. Yoo, K. W. Kim, J. Y. Rhee, L. Y. Chen, and Y. P. Lee, “Switching and extension of transmission response, based on bending metamaterials,” Sci. Rep., vol. 7, no. 1, Jun. 2017, Art. no. 3559.
[31] V. Aksyuk, B. Lahiri, G. Holland, and A. Centrone, “Near-field asymmetries in plasmonic resonators,” Nanoscale, vol. 7, no. 8, pp. 3634–3644, 2015.
DOI: https://doi.org/10.34238/tnu-jst.8659
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu