MỘT GIẢI PHÁP TỰ ĐỘNG ĐỌC CHỈ SỐ ĐỒNG HỒ NƯỚC TỪ ẢNH ÁP DỤNG HỌC SÂU
Thông tin bài báo
Ngày nhận bài: 11/09/23                Ngày hoàn thiện: 06/11/23                Ngày đăng: 06/11/23Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] L. Neumann and J. Matas, “Real-time scene text localization and recognition,” In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 3538–3545.
[2] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman, “Synthetic data and artificial neural networks for natural scene text recognition,” Computer Science, June 2014, doi: 10.48550/arXiv.1406.2227.
[3] Wang, T., Wu, D.J., Coates, A. and Ng, A.Y. “End-to-end text recognition with convolutional neural networks,” 21st International Conference on Pattern Recognition (ICPR), 2012, pp. 3304–3308.
[4] A. Bissacco, M. Cummins, Y. Netzer, and H. Neven, “Photoocr: Reading text in uncontrolled conditions,” Proceedings of the IEEE International Conference on Computer Vision, 2013, pp. 785–792.
[5] T. D. Le, D. T. Nguyen, and Q. B. Truong, “Identification of some types of longan (through leaves) using image and deep learning technology,” TNU Journal of Science and Technology, vol. 228, no. 02, pp. 128 – 135, 2023.
[6] Q. T. Nguyen, Q. U. Nguyen, K. P. Phung, M. T. Nguyen, and M. S. Nguyen, “Detecting and measuring environmental desasters based on image segmentation deep learning technique,” TNU Journal of Science and Technology, vol. 227, no. 16, pp. 140 – 148, 2022.
[7] B. Shi, X. Bai, and C. Yao, “An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, pp. 2298-2304, Nov. 2017.
[8] C.-Y. Lee and S. Osindero “Recursive Recurrent Nets with Attention Modeling for OCR in the Wild,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2231–2239.
[9] R. Laroca, V. Barroso, M. A. Diniz, G. R. Gonc¸alves, W. R. Schwartz, and D. Menotti “Convolutional Neural Networks for Automatic Meter Reading,” Journal of Electronic Imaging, vol. 28, no. 01, pp. 1-14, 2019, doi: 10.1117/1.JEI.28.1.013023.
[10] M. L. W. Concio, F. S. Bernardo, J. M. Opulencia, G. L. Ortiz, and J. R. I. Pedrasa "Automated Water Meter Reading Through Image Recognition," TENCON 2022 - 2022 IEEE Region 10 Conference (TENCON), 01-04 November 2022, doi: 10.1109/TENCON55691.2022.9977678.
[11] Y. Liang, Y. Liao, S. Li, W. Wu, T. Qiu, and W. Zhang "Research on water meter reading recognition based on deep learning," Scientific Reports, vol. 12, 2022, Art. no. 12861, doi: 10.1038/s41598-022-17255-3.
[12] Y. Jiang, X. Zhu, X. Wang, S. Yang, W. Li, H. Wang, P. Fu, and Z. Luo, “R2CNN: Rotational Region CNN for Orientation Robust Scene Text Detection,” Computer Science, June 2017, doi: 10.48550/arXiv.1706.09579.
[13] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object detection with region proposal networks,” Advances in Neural Information Processing Systems, vol. 28, 2015, doi: 10.48550/arXiv.1506.01497.
[14] R. Girshick, J. Donahue, T. Darrell, and J. Malik. “Rich feature hierarchies for accurate object detection and semantic segmentation,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, doi: 10.48550/arXiv.1311.2524.
DOI: https://doi.org/10.34238/tnu-jst.8741
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu