ĐỀ XUẤT ÁP DỤNG GIẢI THUẬT PSO – GA CHO BÀI TOÁN TÁI CẤU HÌNH LƯỚI ĐIỆN PHÂN PHỐI CÓ XÉT ĐẾN TỐI ƯU HÓA CHI PHÍ VẬN HÀNH VÀ CHI PHÍ NGƯNG CẤP ĐIỆN
Thông tin bài báo
Ngày nhận bài: 16/11/23                Ngày hoàn thiện: 22/03/24                Ngày đăng: 22/03/24Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] Erav, “Demand Side Management/DSM,” 2023. [Online]. Available: https://www.erav.vn/tin-tuc/t985/chuong-trinh-quan-ly-nhu-cau-nhung-thuan-loi-va-kho-khan-tai-viet-nam.html. [Accessed Jun. 12, 2023].
[2] A. Merlin and H. Back, “Search for a minimal loss operating spanning tree configuration in an urban power distribution system,” Proceeding 5th power Syst. Comput. conf (PSCC), Cambridge, UK, vol.1. pp.1–18, 1975.
[3] S. Civanlar, J. J. Grainger, H. Yin, and S. S. H. Lee, “Distribution feeder reconfiguration for loss reductions,” IEEE Trans. Power Deliv., vol. 3, no. 3, pp. 1217–1223, 1988.
[4] M. E. Baran and F. F. Wu, “Network reconfiguration in distribution systems for loss reduction and load balancing,” IEEE Transactions on Power Delivery, vol. 4, no. 2. pp. 1401–1407, 1989.
[5] D. Shirmohammadi and H. W. Hong, “Reconfiguration of electric distribution networks for resistive line losses reduction,” IEEE Transactions on Power Delivery, vol. 4, no. 2, pp. 1492–1498, 1989.
[6] K. Nara, A. Shiose, M. Kitagawa, and T. Ishihara, “Implementation of genetic algorithm for distribution systems loss minimum re-configuration,” IEEE Trans. Power Syst., vol. 7, no. 3, pp. 1044–1051, 1992.
[7] B. Tomoiagǎ, M. Chindriş, A. Sumper, R. Villafafila-Robles, and A. Sudria-Andreu, “Distribution system reconfiguration using genetic algorithm based on connected graphs,” Electr. Power Syst. Res., vol. 104, pp. 216–225, 2013.
[8] H. Chitsaz, P. Zamani-Dehkordi, H. Zareipour, and P. P. Parikh, “Electricity Price Forecasting for Operational Scheduling of Behind-the-Meter Storage Systems,” IEEE Transactions on Smart Grid, vol. 9, no. 6, pp. 6612–6622, Oct. 2018, doi: 10.1109/TSG.2017.2717282.
[9] N. Gupta, A. Swarnkar, K. R. Niazi, and R. C. Bansal, “Multi-objective reconfiguration of distribution systems using adaptive genetic algorithm in fuzzy framework,” IET Gener. Transm. Distrib., vol. 4, no. 12, 2010, Art. no. 1288.
[10] D.-L. Duan, X.-D. Ling, X.-Y. Wu, and B. Zhong, “Reconfiguration of distribution network for loss reduction and reliability improvement based on an enhanced genetic algorithm,” Int. J. Electr. Power Energy Syst., vol. 64, pp. 88–95, 2015.
[11] W. C. Wu and M. S. Tsai, “Application of enhanced integer coded particle swarm optimization for distribution system feeder reconfiguration,” IEEE Trans. Power Syst., vol. 26, no. 3, pp. 1591–1599, 2011.
[12] T. T. Nguyen and A. V. Truong, “Distribution network reconfiguration for power loss minimization and voltage profile improvement using cuckoo search algorithm,” Int. J. Electr. Power Energy Syst., vol. 68, pp. 233–242, 2015.
[13] R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms, John Wiley & Sons, Inc., Hoboken, New Jersey, 2004.
[14] X. Hu, Y. Shi, and R. Eberhart, “Recent advances in particle swarm,” Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753), Portland, OR, USA, 2004, pp. 90-97.
[15] C. F. Juang, “A hybrid of genetic algorithm and particle swarm optimization for recurrent network design,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 34. no.2, pp. 997-1006, 2004.
[16] Y. T. Kao and E. Zahara, “A hybrid genetic algorithm and particle swarm optimization for multimodal functions,” Applied Soft Computing, vol. 8, no. 2, pp. 849-857, 2008.
[17] Y. Marinakis and M. Marinaki, “A hybrid genetic–Particle Swarm Optimization Algorithm for the vehicle routing problem,” Expert Systems with Applications, vol.37, no.2, pp.1446-1455, 2010.
[18] H. Duan, Q. Luo, Y. Shi, and G. Ma, “Hybrid particle swarm optimization and genetic algorithm for multi-uav formation reconfiguration,” IEEE Computational Intelligence Magazine, vol.8, no.3, pp. 16-27, 2013.
[19] R. J. Kuo and L. M. Lin, “Application of a hybrid of genetic algorithm and particle swarm optimization algorithm for order clustering,” Decision Support Systems, vol. 49, no. 4, pp. 451-462, 2010.
[20] E. Mahboubi-Moghaddam, M. R. Narimani, M. H. Khooban, A. Azizivahed, and M. J. Sharifi, “Multi-Objective Distribution feeder reconfiguration to improve transient stability, and minimize power loss and operation cost using an enhanced evolutionary algorithm at the presence of distributed generations,” Int. J. Electr. Power Energy Syst., vol. 76, pp. 35–43, 2016.
DOI: https://doi.org/10.34238/tnu-jst.9246
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu