MỘT THUẬT TOÁN TUẦN TỰ ĐỂ XÂY DỰNG LƯỚI TAM GIÁC DELAUNAY
Thông tin bài báo
Ngày nhận bài: 28/12/23                Ngày hoàn thiện: 28/03/24                Ngày đăng: 29/03/24Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] K. H. Huebner, D. L. Dewhirst, D. E. Smith, and T. G. Byrom, The Finite Element Method for Engineers. Wiley, New York, NY, USA, 2001.
[2] L. Tang, C. Ren, Z. Liu, and Q. Li, “A Road Map Refinement Method Using Delaunay Triangulation for Big Trace Data,” ISPRS International Journal of Geo-Information, vol. 6, no. 2, pp. 141-153, 2017.
[3] M. Flores, G. Torres, G. García, and M. Licona, “Fingerprint verification methods using delaunay triangulations,” International Arab Journal of Information Technology, vol. 14, pp. 346-354, 2017.
[4] S. Fortune, “A sweepline algorithm for Voronoi diagrams,” Algorithmica, vol. 2, pp. 153-174, 1987.
[5] R. A. Dwyer, “A faster divide-and-conquer algorithm for constructing Delaunay triangulations,” Algorithmica, vol. 2, pp. 137-151, 1987.
[6] L. Guibas and J. Stolfi, “Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams,” ACM Transactions on Graphics, vol. 4, no. 2, pp. 74-123, 1985.
[7] P. Green and R. Sibson, “Computing Dirichlet tessellations in the plane,” Computer Journal, vol. 21, pp. 168-173, 1977.
[8] M. -B.Chen, T. -R. Chuang, and J. -J. Wu, “Parallel divide-and-conquer scheme for 2D Delaunay
triangulation,” Concurrency and Computation: Practice and Experience, vol. 18, pp. 1595-1612, 2006.
[9] P. T. An and L. H. Trang, “A Parallel Algorithm Based on Convexity for the Computing
of Delaunay Tessellation,” Numerical Algorithms, vol. 59, no. 3, pp. 347–357, 2012.
[10] W. Wu, Y. Rui, F. Su, L. Cheng, and J. Wang, “Novel parallel algorithm for constructing Delaunay triangulation based on a twofold-divide-and-conquer scheme,” GIScience & Remote Sensing, vol. 51, no. 5, pp. 537-554, 2014.
[11] D. T. Lee and B. J. Schachter, “Two Algorithms for Constructing a Delaunay Triangulation,” International Journal of Computer and Information Sciences, vol. 9, no. 3, pp. 219-242, 1980.
[12] M. I. Shamos and D. Hoey, “Closest-point Problems,” Proceedings of the 16th Annual Symposium on Foundations of Computer Science, 1975, pp. 151-162.
[13] P. T. An, “Method of orienting curves for determining the convex hull of a finite set of points in the plane,” Optimization, vol. 59, no. 2, pp. 175-179, 2010.
[14] J. O’Rourke, Computational Geometry in C, Second edition. Cambridge University Press, 1998.
[15] M. de Berg, Computational Geometry Algorithms and Applications. Springer, Germany, 2000.
[16] A. Okabe, B. Boots, and K. Sugihara, Spatial Tessellations: Concepts and Applications of voronoi Diagrams, First edition, John Winley and Sons Ltd, 1992.
DOI: https://doi.org/10.34238/tnu-jst.9487
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu