MỘT MÔ HÌNH HỌC SÂU CHO BÀI TOÁN XẾP HẠNG TÍN DỤNG
Thông tin bài báo
Ngày nhận bài: 17/01/24                Ngày hoàn thiện: 14/05/24                Ngày đăng: 14/05/24Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] B. Baesens,D. Rösch, and H. Scheule, Credit risk analytics: measurement techniques, applications, and examples in SAS, John Wiley & Sons, Inc, New Jersey, 2016.
[2] C. Serrano-Cinca and B. Gutiérrez-Nieto, “The use of profit scoring as an alternative to credit scoring systems in peer-to-peer (P2P) lending,” Decis. Support Syst., vol. 89, pp. 113–122, 2016.
[3] R. Setiono, B. Baesens, and C. Mues, “Recursive neural network rule extraction for data with mixed attributes,” IEEE Trans. Neural Netw, vol. 19, pp. 299–307, 2008.
[4] J. R. Quinlan, Programs for Machine Learning, Morgan Kaufmann: San Mateo, Canada, 1993.
[5] D. Martens, B. Baesens, T. Van Gestel, and J. Vanthienen, “Comprehensible credit scoring models using support vector machines,” Eur. J. Oper. Res., vol. 183, pp. 1488–1497, 2007.
[6] C. Wang, D. Han, Q. Liu, and S. Luo, “A Deep Learning Approach for Credit Scoring of Peer-to-Peer Lending Using Attention Mechanism LSTM,” IEEE Access, vol. 7, pp. 2161-2168, 2019.
[7] X. Dastile and T. Celik, “Making deep learning-based predictions for credit scoring explainable,” IEEE Access, vol. 9, pp. 50426–50440, 2021.
[8] G. Li, H.D. Ma, R.Y. Liu, M. D. Shen, and K. X. Zhang, “A two-stage hybrid default discriminant model based on Deep Forest,” Entropy, vol. 23, 2021, Art. no. 582.
[9] J. Nagidi, “Best ways to handle imbalanced data in machine learning,” Dataaspirant Homepage, [Online]. Available: https://dataaspirant.com/handle-imbalanced-data-machine-learning/ [Accessed Jan. 15, 2024].
[10] J. Brownlee, “Random Oversampling and Undersampling for Imbalanced Classification,” Machine Learning Mastery Homepage, [Online]. Available: https://machinelearningmastery.com/random-oversampling-and-undersampling-for-imbalanced-classification/. [Accessed Jan. 15, 2024].
[11] German Credit Data, “UC Irvine Machine Learning Repository,” [Online]. Available: https://archive.ics.uci.edu/dataset/144/statlog+german+credit+data. [Accessed Jan. 15, 2024].
[12] P. Selva, “Train test split – How to split data into train and test for validating machine learning models?” [Online]. Available: https://www.machinelearningplus.com/machine-learning/train-test-split/ [Accessed Feb. 23, 2024].
[13] H. Yoichi, “Emerging trends in deep learning for credit scoring: A review,” Electronics, vol. 11, no. 19, 2022, Art. no. 3181.
[14] W. Zhang, D. Yang, S. Zhang, J. H. Ablanedo-Rosas, X. Wu, and Y. Lou, “A novel multi-stage ensemble model with enhanced outlier adaptation for credit scoring,” Expert Syst. Appl., vol. 165, 2021, Art. no. 113872.
[15] L. Yu, S. Wang, and K. K. Lai, “An intelligent-agent-based fuzzy group decision making model for financial multi criteria decision support: The case of credit scoring,” Eur. J. Oper. Res., vol. 195, pp. 942–959, 2009.
[16] N. Arora and P. D. Kaur, “A Bolasso based consistent feature selection enabled random forest classification algorithm: An application to credit risk assessment,” Appl. Soft Comput., vol. 86, 2020, Art. no. 105936.
[17] D. R. Edla, D. Tripathi, R. Cheruku, and V. Kuppili, “An efficient multi-layer ensemble framework with BPSOGSA-based feature selection for credit scoring data analysis,” Arab. J. Sci. Eng., vol. 43, pp. 6909–6928, 2018.
[18] D. Tripathi, D. R. Edla, and R. Cheruku, “Hybrid credit scoring model using neighborhood rough set and multi-layer ensemble classification,” J. Intell. Fuzzy Syst., vol. 34, pp. 1543–1549, 2018.
[19] S.K. Trivedi, “A study on credit scoring modeling with different feature selection and machine learning approaches,” Technol. Soc., vol. 63, 2020, Art. no. 101413.
[20] S. Acharya, I. V. Pustokhina, D.A. Pustokhin, B. T. Geetha, G. P. Joshi, J. Nebhen, E. Yang, and C. Seo, “An improved gradient boosting tree algorithm for financial risk management,” Knowl. Manag. Res. Pract., 2021, doi:10.1080/14778238.2021.1954489.
DOI: https://doi.org/10.34238/tnu-jst.9608
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu