HỌC TỪ ĐIỂN KHÔNG MẠCH LẠC VỚI RÀNG BUỘC CỤC BỘ ĐẠI DIỆN HẠNG THẤP TRONG PHÂN LOẠI HÌNH ẢNH
Thông tin bài báo
Ngày nhận bài: 20/02/24                Ngày hoàn thiện: 28/03/24                Ngày đăng: 29/03/24Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] Z. Jiang, Z. Lin, and L. S. Davis, “Label consistent K-SVD: Learning a discriminative dictionary for recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 11, pp. 2651–2664, 2013, doi: 10.1109/TPAMI.2013.88.
[2] M. Yang, L. Zhang, X. Feng, and D. Zhang, “Fisher Discrimination Dictionary Learning for sparse representation,” in Proceedings of the IEEE International Conference on Computer Vision, 2011, pp. 543–550, doi: 10.1109/ICCV.2011.6126286.
[3] G. Zhang, J. Yang, Y. Zheng, Z. Luo, and J. Zhang, “Optimal discriminative feature and dictionary learning for image set classification,” Inf. Sci. (Ny)., vol. 547, pp. 498–513, Feb. 2021, doi: 10.1016/j.ins.2020.08.066.
[4] B.-Q. Yang, X.-P. Guan, J.-W. Zhu, C.-C. Gu, K.-J. Wu, and J.-J. Xu, “SVMs multi-class loss feedback based discriminative dictionary learning for image classification,” Pattern Recognit., vol. 112, Apr. 2021, Art. no. 107690, doi: 10.1016/j.patcog.2020.107690.
[5] H. Nguyen, W. Yang, B. Sheng, and C. Sun, “Discriminative low-rank dictionary learning for face recognition,” Neurocomputing, vol. 173, pp. 541–551, Jan. 2016, doi: 10.1016/j.neucom.2015.07.031.
[6] H. V. Nguyen, Q. C. Tran, and T. P. Tran “Discriminative Dictionary Pair Learning for Image Classification,” J. Comput. Sci. Cybern., vol. 36, no. 4, pp. 347–363, 2020, doi: 10.15625/1813-9663/36/4/15105.
[7] H. F. Yin, X. J. Wu, and S. G. Chen, “Locality Constraint Dictionary Learning with Support Vector for Pattern Classification,” IEEE Access, vol. 7, pp. 175071–175082, 2019, doi: 10.1109/ACCESS. 2019.2957417.
[8] Y. Peng, S. Liu, X. Wang, and X. Wu, “Joint local constraint and fisher discrimination based dictionary learning for image classification,” Neurocomputing, vol. 398, pp. 505–519, Jul. 2020, doi: 10.1016/j.neucom.2019.05.103.
[9] J. Huang, K. Liu, and X. Li, “Locality Constrained Low Rank Representation and Automatic Dictionary Learning for Hyperspectral Anomaly Detection,” Remote Sens., vol. 14, no. 6, Mar. 2022, Art. no. 1327, doi: 10.3390/rs14061327.
[10] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, “Robust recovery of subspace structures by low-rank representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 1, pp. 171–184, 2013, doi: 10.1109/TPAMI.2012.88.
[11] Y. Li, J. Liu, H. Lu, and S. Ma, “Learning robust face representation with classwise block-diagonal structure,” IEEE Trans. Inf. Forensics Secur., vol. 9, no. 12, pp. 2051–2062, 2014, doi: 10.1109/TIFS.2014.2361936.
[12] L. Wei, A. Wu, and J. Yin, “Latent space robust subspace segmentation based on low-rank and locality constraints,” Expert Syst. Appl., vol. 42, no. 19, pp. 6598–6608, 2015, doi: 10.1016/j.eswa. 2015.04.041.
[13] Z. Lin, M. Chen, and Y. Ma, “The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices,” Journal of Structural Biology, Sep. 2010, doi: 10.1016/j.jsb.2012.10.010.
[14] T.-Y. Hung, J. Lu, Y.-P. Tan, and S. Gao, “Efficient Sparsity Estimation via Marginal-Lasso Coding,” in Proceedings of Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Part IV 13, Springer, 2014, pp. 578–592.
[15] A. M. Martinez and A. C. Kak, “PCA versus LDA,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 2, pp. 228–233, Feb. 2001, doi: 10.1109/34.908974.
[16] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories,” in 2004 conference on computer vision and pattern recognition workshop, IEEE, 2004, p. 178.
[17] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face recognition via sparse representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 2, pp. 210–227, 2009, doi: 10.1109/TPAMI.2008.79.
[18] Y. Zhang, Z. Jiang, and L. S. Davis, “Learning structured low-rank representations for image classification,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2013, pp. 676–683, doi: 10.1109/CVPR.2013.93.
DOI: https://doi.org/10.34238/tnu-jst.9733
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu