PHÂN TÍCH CÁC HỢP CHẤT DỄ BAY HƠI, SÀNG LỌC TÁC DỤNG KHÁNG OXY HÓA, ỨC CHẾ TẾ BÀO HepG2 IN VITRO CỦA CAO ETHANOL VÀ CÁC PHÂN ĐOẠN TỪ TOÀN CÂY RAU MƯƠNG THON (Ludwidgia hyssopifolia) | Duy | TNU Journal of Science and Technology

PHÂN TÍCH CÁC HỢP CHẤT DỄ BAY HƠI, SÀNG LỌC TÁC DỤNG KHÁNG OXY HÓA, ỨC CHẾ TẾ BÀO HepG2 IN VITRO CỦA CAO ETHANOL VÀ CÁC PHÂN ĐOẠN TỪ TOÀN CÂY RAU MƯƠNG THON (Ludwidgia hyssopifolia)

Thông tin bài báo

Ngày nhận bài: 29/02/24                Ngày hoàn thiện: 31/05/24                Ngày đăng: 06/06/24

Các tác giả

1. Huỳnh Anh Duy Email to author, Trường Đại học Cần Thơ
2. Trần Thị Kim Ngà, Trường Đại học Cần Thơ
3. Huỳnh Phú Vinh, Trường Đại học Cần Thơ

Tóm tắt


Ludwigia hyssopifolia được sử dụng trong dân gian để điều trị bệnh vàng da ở nhiều nước châu Á. Nghiên cứu nhằm đánh giá đặc tính kháng oxy hóa và ức chế dòng tế bào HepG2 của cao chiết. Cao ethanol và phân đoạn chloroform, ethyl acetat và methanol được chuẩn bị. Mẫu được khảo sát đặc tính kháng oxy hóa trên mô hình DPPH. Thử nghiệm MTT được thực hiện để nghiên cứu hoạt tính ức chế HepG2. Các hợp chất dễ bay hơi từ cao ethanol được xác định bằng GC-MS. Hàm lượng polyphenol và flavonoid toàn phần được xác định bằng phương pháp quang phổ. Cao ethanol ghi nhận 15 cấu tử, với crocetane, heneicosane và 3,5-di-tert-butylphenol là các thành phần chính. Phân đoạn ethyl acetat và methanol có hàm lượng polyphenol và flavonoid cao nhất cũng như có hoạt tính kháng oxy hóa tốt nhất. Cao ethanol toàn phần và phân đoạn chloroform cho hoạt tính ức chế HepG2 tiềm năng nhất. Do đó, L. hyssopifolia có tiềm năng để phát triển các sản phẩm chống oxy hóa và bảo vệ gan.

Từ khóa


Rau mương thon; Toàn cây; Kháng oxy hóa; Ức chế HepG2; GC-MS

Toàn văn:

PDF (English)

Tài liệu tham khảo


[1] J. H. Oh and D. W. Jun, "The latest global burden of liver cancer: A past and present threat," Clin Mol Hepatol, vol. 29, no. 2, pp. 355-357, 2023.

[2] L. X. Qin and Z. Y. Tang, "Hepatocellular carcinoma with obstructive jaundice: diagnosis, treatment and prognosis," World J Gastroenterol, vol. 9, no. 3, pp. 385-391, 2003.

[3] A. K. Singh, S. V. Singh, R. Kumar, S. Kumar, S. Senapati, and A. K. Pandey, "Current therapeutic modalities and chemopreventive role of natural products in liver cancer: Progress and promise," World J Hepatol, vol. 15, no. 1, pp. 1-18, 2023.

[4] D. B. Kim, D. K. Lee, C. Cheon, R. Ribeiro, and B. Kim, "Natural Products for Liver Cancer Treatment: From Traditional Medicine to Modern Drug Discovery," Nutrients, vol. 14, no. 20, p. 4252, 2022.

[5] V. Deepak, S. Arumugam, C. Amritha, P. Prajitha, and H. Faslu, "Phytopharmacological activities of Ludwigia hyssopifolia (g. Don) exell: a review," Asian Journal of Research in Chemistry and Pharmaceutical Sciences, vol. 7, no. 2, pp. 781-789, 2019.

[6] V. Janghel, P. Patel, and S. S. Chandel, "Plants used for the treatment of icterus (jaundice) in Central India: A review," Annals of Hepatology, vol. 18, no. 5, pp. 658-672, 2019.

[7] Q. D. Tran, T. S. Khuu, T. T. G. Le, M. T. A. Nguyen, T. N. G. Ngo, and T. T. T. Nguyen, "A review on chemical constituents of Ludwigia genus in Vietnam," Cantho Journal of Medicine and Pharmacy, vol. 65, pp. 234-243, 2023.

[8] M. T. Donato, L. Tolosa, and M. J. Gómez‐Lechón, "Culture and Functional Characterization of Human Hepatoma HepG2 Cells," Methods in molecular biology, vol. 1250, pp. 77-93, 2015.

[9] P. Praneetha, Y. N. Reddy, and B. R. Kumar, "In vitro and In vivo hepatoprotective studies on methanolic extract of aerial parts of Ludwigia hyssopifolia G. Don Exell," Pharmacognosy Magazine, vol. 14, no. 59s, pp. s546-s553, 2018.

[10] A. D. Huynh, P. V. Huynh, V. H. Nguyen, and T. K. N. Tran, "In vitro anti-oxidant, anti-HepG2 properties of aqueous extracts from various parts of Ludwidgia hyssopifolia," TNU Journal of Science and Technology, vol. 229, no. 02, pp. 148-155, 2024.

[11] K. Huang and D. Armstrong, "GC-MS analysis of crocetane, phytane and some of their stereoisomers using cyclodextrin-based stationary phases," Organic Geochemistry, vol. 40, pp. 283-286, 2009.

[12] J. Asgarpanah and N. Kazemivash, "Phytochemistry, pharmacology and medicinal properties of Carthamus tinctorius L.," Chin J Integr Med, vol. 19, no. 2, pp. 153-159, 2013.

[13] V. Vanitha, S. Vijayakumar, M. Nilavukkarasi, V. N. Punitha, E. Vidhya, and P. K. Praseetha, "Heneicosane—A novel microbicidal bioactive alkane identified from Plumbago zeylanica L.," Industrial Crops and Products, vol. 154, 2020, Art. no. 112748.

[14] M. Sharma, S. Bharti, A. Goswami, and S. Mallubhotla, "Diversity, Antimicrobial, Antioxidant, and Anticancer Activity of Culturable Fungal Endophyte Communities in Cordia dichotoma," Molecules, vol. 28, no. 19, p. 6926, 2023.

[15] J. Rathna, D. Bakkiyaraj, and S. K. Pandian, "Anti-biofilm mechanisms of 3,5-di-tert-butylphenol against clinically relevant fungal pathogens," Biofouling, vol. 32, no. 9, pp. 979-993, 2016.

[16] M. Das et al., "Dihydroactinidiolide, a natural product against Aβ(25-35) induced toxicity in Neuro2a cells: Synthesis, in silico and in vitro studies," Bioorg Chem, vol. 81, pp. 340-349, 2018.

[17] M. Amal et al., "Chemical constituents and biological activities of different solvent extracts of Prosopis farcta growing in Egypt," Journal of Pharmacognosy and Phytotherapy, vol. 9, pp. 67-76, 2017.

[18] I. Naureen et al., "Borneol as Adjuvant Chemotherapy: A New Way for the Development of Novel Chemotherapeutic," Haya: The Saudi Journal of Life Sciences, vol. 7, no. 4, pp. 128-141, 2022.

[19] M. Kulkarni, N. Sawant, A. Kolapkar, A. Huprikar, and N. Desai, "Borneol: a Promising Monoterpenoid in Enhancing Drug Delivery Across Various Physiological Barriers," AAPS PharmSciTech, vol. 22, no. 4, p. 145, 2021.

[20] M. Wang et al., "Natural borneol serves as an adjuvant agent to promote the cellular uptake of piperlongumine for improving its antiglioma efficacy", European Journal of Pharmaceutical Sciences, vol. 181, 2023, Art. no. 106347.

[21] J. Su et al., "Natural borneol, a monoterpenoid compound, potentiates selenocystine-induced apoptosis in human hepatocellular carcinoma cells by enhancement of cellular uptake and activation of ROS-mediated DNA damage," PLoS One, vol. 8, no. 5, 2013, Art. no. e63502.

[22] W. Chen, I. Vermaak, and A. Viljoen, "Camphor--a fumigant during the Black Death and a coveted fragrant wood in ancient Egypt and Babylon--a review," Molecules, vol. 18, no. 5, pp. 5434-5454, 2013.

[23] H. Singh et al., "Camphor and Menthol as Anticancer Agents: Synthesis, Structure-Activity Relationship and Interaction with Cancer Cell Lines," Anticancer Agents Med Chem, vol. 23, no. 6, pp. 614-623, 2023.

[24] J. Li et al., "Isolongifolene alleviates liver ischemia/reperfusion injury by regulating AMPK-PGC1α signaling pathway-mediated inflammation, apoptosis, and oxidative stress," International Immunopharmacology, vol. 113, 2022, Art. no. 109185.

[25] K. Rangasamy and E. Namasivayam, "In vitro Antioxidant and Free Radical Scavenging Activity of Isolongifolene," Asian Journal of Biological Sciences, vol. 5, pp. 1-11, 2014.

[26] F. Bruno et al., "Cytotoxic Screening and In Vitro Evaluation of Pentadecane Against Leishmania infantum Promastigotes and Amastigotes," J Parasitol, vol. 101, no. 6, pp. 701-705, 2015.

[27] Y. Li, H. Qiao, R. Zhang, W. Zhang, and P. Wen, "Microbial Diversity and Volatile Flavor Compounds in Tibetan Flavor Daqu," Foods, vol. 12, no. 2, p. 324, 2023.

[28] L. C. Wu, J. A. Ho, M. C. Shieh, and I. W. Lu, "Antioxidant and antiproliferative activities of Spirulina and Chlorella water extracts," J Agric Food Chem, vol. 53, no. 10, pp. 4207-4212, 2005.

[29] D. H. Kim et al., "Molecular study of dietary heptadecane for the anti-inflammatory modulation of NF-kB in the aged kidney," PLoS One, vol. 8, no. 3, 2013, Art. no. e59316.

[30] A. Serçe et al., "Assessment of the Antioxidant Activity of Silybum marianum Seed Extract and Its Protective Effect against DNA Oxidation, Protein Damage and Lipid Peroxidation," Food Technol Biotechnol, vol. 54, no. 4, pp. 455-461, 2016.

[31] S. Martínez, C. Fuentes, and J. Carballo, "Antioxidant Activity, Total Phenolic Content and Total Flavonoid Content in Sweet Chestnut (Castanea sativa Mill.) Cultivars Grown in Northwest Spain under Different Environmental Conditions," Foods, vol. 11, no. 21, 2022, Art. no. 3519.

[32] S. Aryal, M. K. Baniya, K. Danekhu, P. Kunwar, R. Gurung, and N. Koirala, "Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal," Plants (Basel), vol. 8, no. 4, p. 96, 2019.

[33] E. Bendary, R. Francis, H. Ali, M. Sarwat, and S. El Hady, "Antioxidant and structure–activity relationships (SARs) of some phenolic and anilines compounds," Annals of Agricultural Sciences, vol. 58, no. 2, pp. 173-181, 2013.

[34] V. Soleimani, P. S. Delghandi, S. A. Moallem, and G. Karimi, "Safety and toxicity of silymarin, the major constituent of milk thistle extract: An updated review," Phytother Res, vol. 33, no. 6, pp. 1627-1638, 2019.

[35] S. A. Emadi, M. Ghasemzadeh Rahbardar, S. Mehri, and H. Hosseinzadeh, "A review of therapeutic potentials of milk thistle (Silybum marianum L.) and its main constituent, silymarin, on cancer, and their related patents," Iran J Basic Med Sci, vol. 25, no. 10, pp. 1166-1176, 2022.




DOI: https://doi.org/10.34238/tnu-jst.9808

Các bài báo tham chiếu

  • Hiện tại không có bài báo tham chiếu
Tạp chí Khoa học và Công nghệ - Đại học Thái Nguyên
Phòng 408, 409 - Tòa nhà Điều hành - Đại học Thái Nguyên
Phường Tân Thịnh - Thành phố Thái Nguyên
Điện thoại: 0208 3840 288 - E-mail: jst@tnu.edu.vn
Phát triển trên nền tảng Open Journal Systems
©2018 All Rights Reserved