KHUYẾN NGHỊ KHI TÍNH TOÁN ĐỘ VÕNG NGẮN HẠN CỦA CẤU KIỆN BÊ TÔNG CỐT THÉP THEO TIÊU CHUẨN TCVN 5574:2018 QUA VIỆC SO SÁNH VỚI MÔ PHỎNG PHẦN TỬ HỮU HẠN
Thông tin bài báo
Ngày nhận bài: 21/03/24                Ngày hoàn thiện: 23/05/24                Ngày đăng: 24/05/24Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] Vietnam Institute for Building Science and Technology (IBST), TCVN 5574:2018, National Standard - Design of Concrete and Reinforced Concrete Structures, 2018.
[2] N. L. Nguyen, N. T. Nguyen, V. Q. Nguyen, and Q. M. Phan, “Theoretical and experimental study for determining ultimate flexural moment of reinforced concrete beams using non-linear model of concrete deformation,” Journal of Science and Technology in Civil Engineering, vol. 62, no. 1, pp. 36–41, 2020.
[3] H. A. T. Nguyen, “Investigation of Bending Behaviors in Reinforced Concrete Beam from Moment-Curivature Diagrams According to TCVN 5574:2018,” Journal of Science and Technology Construction, vol. 2, pp. 62–69, 2020.
[4] M. T. Phan and V. T. Tran, “Research on Calculation Short-Term Deflection of Reinforced Concrete Beam Using Hybrid (Steel and GFRP) Bars Conforming to TCVN 5574:2018,” Journal of Science and Technology in Civil Engineering, vol. 16, no. 3V, pp. 74–85, 2022.
[5] J. Lubliner, J. Oliver, S. Oller, and E. Onate, “A Plastic-Damage Model,” Int. J. Solids Struct., vol. 25, no. 3, pp. 299–326, 1989.
[6] M. H. Le, S. Khatir, M. Abdel Wahab, and T. C. Le, “A concrete damage plasticity model for predicting the effects of compressive high-strength concrete under static and dynamic loads,” Journal of Building Engineering, vol. 44, July 2021, Art. no. 103239, doi: 10.1016/j.jobe.2021.103239.
[7] C. V. Nguyen, Q. H. Bui, and P. Lambert, “Experimental and numerical evaluation of the structural performance of corroded reinforced concrete beams under different corrosion schemes,” Structures, vol. 45, pp. 2318–2331, April 2022, doi: 10.1016/j.istruc.2022.10.043.
[8] L. Amleh and A. Ghosh, “Modeling the effect of corrosion on bond strength at the steel-concrete interface with finite-element analysis,” Canadian Journal of Civil Engineering, vol. 33, no. 6, pp. 673–682, 2006, doi: 10.1139/L06-052.
[9] M. Hafezolghorani, F. Hejazi, R. Vaghei, M. S. B. Jaafar, and K. Karimzade, “Simplified damage plasticity model for concrete,” Structural Engineering International, vol. 27, no. 1, pp. 68–78, 2017, doi: 10.2749/101686616X1081.
[10] B. Alfarah, F. López-Almansa, and S. Oller, “New methodology for calculating damage variables evolution in Plastic Damage Model for RC structures,” Eng. Struct., vol. 132, pp. 70–86, 2017, doi: 10.1016/j.engstruct.2016.11.022.
[11] R. Shamass, X. Zhou, and G. Alfano, “Finite-Element Analysis of Shear-Off Failure of Keyed Dry Joints in Precast Concrete Segmental Bridges,” Journal of Bridge Engineering, vol. 20, no. 6, 2015, doi: 10.1061/(asce)be.1943-5592.0000669.
[12] A. Mathern and J. Yang, “A practical finite element modeling strategy to capture cracking and crushing behavior of reinforced concrete structures,” Materials, vol. 14, no. 3, pp. 1–26, 2021, doi: 10.3390/ma14030506.
[13] British Standard Institution (BSI), “Eurocode 2: Design of concrete structures. Part 1-1: General rules and rules for buildings,” BS EN 1992-1-1:2004, London, 2004.
[14] A. Nafees, M. F. Javed, M. A. Musarat, M. Ali, F. Aslam, and N. I. Vatin, “FE Modelling and Analysis of Beam Column Joint Using Reactive Powder Concrete,” Crystals (Basel), vol. 11, no. 11, 2021, doi: 10.3390/cryst11111372.
DOI: https://doi.org/10.34238/tnu-jst.9941
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu