ANTIOXIDANT POTENTIAL OF ETHANOL EXTRACTS OF TWO BROWN ALGAE SPECIES Turbinaria decurrens and Turbinaria conoides DISTRIBUTED IN DAM DUOC ISLAND, KIEN GIANG PROVINCE
About this article
Received: 18/07/24                Revised: 17/10/24                Published: 18/10/24Abstract
Keywords
Full Text:
PDF (Tiếng Việt)References
[1] S. J. S. Flora, “Arsenic-induced oxidative stress and its reversibility,” Free Radical Biology and Medicine, vol. 51, no. 2, pp. 257-281, 2011, doi: 10.1016/j.freeradbiomed.2011.04.008.
[2] V. Gnanavel, S. M. Roopan, and S. Rajeshkumar, “Aquaculture: An overview of chemical ecology of seaweeds (food species) in natural products,” Aquaculture, vol. 507, pp. 1-6, 2019, doi: 10.1016/j.aquaculture.2019.04.004.
[3] T. Rahman, I. Hosen, M. M. T. Islam, and H. U. Shekhar, “Oxidative stress and human health,” Advances in Bioscience and Biotechnology, vol. 03, no. 07, 2012, doi: 10.4236/abb.2012.327123.
[4] C. Hano and D. Tungmunnithum, “Plant Polyphenols, More than Just Simple Natural Antioxidants: Oxidative Stress, Aging and Age-Related Diseases,” Medicines, vol. 7, no. 5, 2020, doi: 10.3390/medicines7050026.
[5] S. Rattaya, S. Benjakul, and T. Prodpran, “Extraction, antioxidative, and antimicrobial activities of brown seaweed extracts, Turbinaria ornata and Sargassum polycystum, grown in Thailand,” Int Aquat Res, vol. 7, no. 1, 2015, doi: 10.1007/s40071-014-0085-3.
[6] A. Ponnan, K. Ramu, M. Marudhamuthu, R. Marimuthu, K. Siva, and M. Kadarkarai, “Antibacterial, antioxidant and anticancer properties of Turbinaria conoides (J. Agardh) Kuetz,” Clinical Phytoscience, vol. 3, no. 1, 2017, doi: 10.1186/s40816-017-0042-y.
[7] F. J. Sami, N. H. Soekamto, Firdaus, and J. Latip, “Total phenolic, antioxidant activity and toxicity effect of Turbinaria decurrens extracts from South Sulawesi,” Journal of Physics: Conference Series, vol. 1341, no. 3, p. 032008, 2019, doi: 10.1088/1742-6596/1341/3/032008.
[8] S. Ananthi, H. R. B. Raghavendran, A. G. Sunil, V. Gayathri, G. Ramakrishnan, and H. R. Vasanthi, “In vitro antioxidant and in vivo anti-inflammatory potential of crude polysaccharide from Turbinaria ornata (Marine Brown Alga),” Food and Chemical Toxicology, vol. 48, no. 1, 2010, doi: 10.1016/j.fct.2009.09.036.
[9] K. Chakraborty, N. K. Praveen, K. K. Vijayan, and G. S. Rao, “Evaluation of phenolic contents and antioxidant activities of brown seaweeds belonging to Turbinaria spp. (Phaeophyta, Sargassaceae) collected from Gulf of Mannar,” Asian Pac J Trop Biomed, vol. 3, no. 1, 2013, doi: 10.1016/S2221-1691(13)60016-7.
[10] R. M. Nguimbou, T. Boudjeko, N. Y. Njintang, M. Himeda, J. Scher, and C. M. F. Mbofung, “Mucilage chemical profile and antioxidant properties of giant swamp taro tubers,” Journal of food science and technology, vol. 51, pp. 3559-3567, 2014, doi: 10.1007/s13197-012-0906-6.
[11] J. Zhishen, T. Mengcheng, and W. Jianming, “The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals,” Food Chem, vol. 64, no. 4, 1999, doi: 10.1016/S0308-8146(98)00102-2.
[12] O. P. Sharma and T. K. Bhat, “DPPH antioxidant assay revisited,” Food Chem, vol. 113, no. 4, 2009, doi: 10.1016/j.foodchem.2008.08.008.
[13] P. Shah and H. A. Modi, “Comparative Study of DPPH, ABTS and FRAP Assays for Determination of Antioxidant Activity,” International Journal for Research in Applied Science & Engineering Technology (IJRASET), vol. 3, no. 6, pp. 636-641, 2015.
[14] N. Chaves, A. Santiago, and J. C. Alías, “Quantification of the antioxidant activity of plant extracts: Analysis of sensitivity and hierarchization based on the method used,” Antioxidants, vol. 9, no. 1, 2020, doi: 10.3390/antiox9010076.
[15] S. Nazir et al., “Callus culture of Thai basil is an effective biological system for the production of antioxidants,” Molecules, vol. 25, no. 20, 2020, doi: 10.3390/molecules25204859.
[16] M. Genestra, “Oxyl radicals, redox-sensitive signalling cascades and antioxidants,” Cell Signal, vol. 19, no. 9, pp. 1807-1819, Sep. 2007, doi: 10.1016/J.CELLSIG.2007.04.009.
[17] R. A. El-Shenody, M. Ashour, and M. M. E. Ghobara, “Evaluating the chemical composition and antioxidant activity of three Egyptian seaweeds: Dictyota dichotoma, Turbinaria decurrens, and Laurencia obtusa,” Brazilian Journal of Food Technology, vol. 22, 2019, doi: 10.1590/1981-6723.20318.
[18] E. A. Hasan, M. A. El-Hashash, M. K. Zahran, and H. M. El-Rafie, “Comparative study of chemical composition, antioxidant and anticancer activities of both Turbinaria decurrens Bory methanol extract and its biosynthesized gold nanoparticles,” J Drug Deliv Sci Technol, vol. 67, 2022, doi: 10.1016/j.jddst.2021.103005.
[19] G. A. Ismail, S. F. Gheda, A. M. Abo-Shady, and O. H. Abdel-Karim, “In vitro potential activity of some seaweeds as antioxidants and inhibitors of diabetic enzymes,” Food Science and Technology (Brazil), vol. 40, no. 3, 2020, doi: 10.1590/fst.15619.
[20] G. Sanger, L. K. Rarung, D. Wonggo, V. Dotulong, L. J. Damongilala, and T. E. Tallei, “Cytotoxic activity of seaweeds from North Sulawesi marine waters against cervical cancer,” J Appl Pharm Sci, vol. 11, no. 9, 2021, doi: 10.7324/JAPS.2021.110908.
[21] C. R. Delma, S. T. Somasundaram, G. P. Srinivasan, M. Khursheed, M. D. Bashyam, and N. Aravindan, “Fucoidan from turbinaria conoides: A multifaceted ‘deliverable’ to combat pancreatic cancer progression,” Int J Biol Macromol, vol. 74, 2015, doi: 10.1016/j.ijbiomac.2014.12.031.
[22] W. Boonchum et al., “Antioxidant activity of some seaweed from the Gulf of Thailand,” Int J Agric Biol, vol. 13, no. 1, pp. 95-99, 2011.
[23] Z. Zhang, F. Wang, X. Wang, X. Liu, Y. Hou, and Q. Zhang, “Extraction of the polysaccharides from five algae and their potential antioxidant activity in vitro,” Carbohydr Polym, vol. 82, no. 1, 2010, doi: 10.1016/j.carbpol.2010.04.031.
[24] O. Honey, S. A. I. Nihad, M. A. Rahman, M. M. Rahman, M. Islam, and M. Z. R. Chowdhury, “Exploring the antioxidant and antimicrobial potential of three common seaweeds of Saint Martin’s Island of Bangladesh,” Heliyon, vol. 10, no. 4, 2024, doi: 10.1016/j.heliyon.2024.e26096.
[25] Y. Li et al., “Furbellow (Brown algae) extract increases lifespan in Drosophila by interfering with TOR-signaling,” Nutrients, vol. 12, no. 4, 2020, doi: 10.3390/nu12041172.
[26] E. Lashmanova et al., “Fucoxanthin increases lifespan of Drosophila melanogaster and Caenorhabditis elegans,” Pharmacol Res, vol. 100, 2015, doi: 10.1016/j.phrs.2015.08.009.DOI: https://doi.org/10.34238/tnu-jst.10783
Refbacks
- There are currently no refbacks.





