ENHANCED REMOVAL OF DYE USING Bi3+-DOPED ZrO2@GO NANOCOMPOSITES PREPARED BY ULTRASOUND-ASSISTED HYDROTHERMAL METHOD | Nhương | TNU Journal of Science and Technology

ENHANCED REMOVAL OF DYE USING Bi3+-DOPED ZrO2@GO NANOCOMPOSITES PREPARED BY ULTRASOUND-ASSISTED HYDROTHERMAL METHOD

About this article

Received: 27/11/24                Revised: 03/01/25                Published: 04/01/25

Authors

1. Chu Manh Nhuong, TNU - University of Education
2. Le Thu Huyen Email to author, Ha Trung Primary & Secondary School, Ha Long, Quang Ninh
3. Nguyen Thi anh Tuyet, TNU - University of Medicine and Pharmacy

Abstract


This publication further investigates the chemical composition, energy reflection/diffusion properties and surface charge of Bi3+-doped ZrO2@GO nanocomposites (ZrO2@GO:Bi3+) have been synthesized by ultrasound-assisted hydrothermal method, aiming to exploit the photocatalytic applications. The EDX spectra confirm that the ZrO2@GO:Bi3+ nanocomposites have high purity with the main chemical components (Zr, Bi, C, O), which are evenly dispersed in the sample matrix. The zeta potential distribution spectra demonstrate that the surface charge of ZrO2@GO:Bi3+ materials had highly negative surface charges with zeta potential values ranging from –2.77 mV to –16.03 mV. The diffuse reflectance spectra show that Bi3+ ion doping reduced the band gap of ZrO2@GO from 2.50 eV to about 2.13–2.00 eV in the ZrO2@GO:Bi3+ nanocomposites. The ZrO2@GO:Bi3+ nanocomposites have a negatively charged surface, suitable for treating positively charged dyes such as Rhodamine B. The adsorption efficiency of Rhodamine B on the surface of ZrO2@GO:Bi3+ nanocomposites reaches 35.97% - 39.70%. The Bi3+ ions improve the photocatalytic ability of ZrO2@GO:Bi3+ material, while the Rhodamine B decomposition reaction reaches 91.84% efficiency and followed the first order kinetic equation, when illuminated with xenon lamp for 180 minutes. The ZrO2@GO:Bi3+ materials has excellent properties and great potential in treating wastewater contaminated with dyes and organic substances that are difficult to decompose.

Keywords


ZrO2@GO; Bi3+; Activity Photocatalytic; Rhodamine B

References


[1] P. Nuengmatcha, P. Porrawatkul, S. Chanthai, P. Sricharoen, and N. Limchoowong, “Enhanced photocatalytic degradation of methylene blue using Fe2O3/graphene/CuO nanocomposites under visible light,” J. Environ. Chem. Eng., vol. 7, no. 6, 2019, Art. no. 103438, doi: 10.1016/j.jece.2019.103438.

[2] Z. Jing, Y. Li, Y. Zhang, M. Wang, Y. Sun, K. Chen, B. Chen, S. Zhao, Y. Jin, Q. Du, X. Pi, and Y. Wang, “Enhanced methylene blue adsorption using zirconate alginate/graphene oxide/UiO-67 aerogel spheres: Synthesis, characterization, kinetic studies, and adsorption mechanisms,” Int. J. Biol. Macromol., vol. 238, 2023, Art. no. 124044, doi: 10.1016/j.ijbiomac.2023.124044.

[3] J. Xie, Y. He, B. Liu, and H. Wang, “A novel insight of photodegradation of dye mixture by surface analysis,” Catal. Commun., vol. 120, pp. 101-105, Feb. 2019, doi: 10.1016/j.catcom.2018.09.008.

[4] C. Diaz-Uribe, J. Florez, W. Vallejo, F. Duran, E. Puello, V. Roa, E. Schott, and X. Zarate, “Removal and photocatalytic degradation of methylene blue on ZrO2 thin films modified with Anderson-Polioxometalates (Cr3+, Co3+, Cu2+): An experimental and theoretical study,” J. Photochem. Photobiol. A Chem., vol. 454, Sep. 2024, doi: 10.1016/j.jphotochem.2024.115689.

[5] M. A. Arayesh, A. H. Kianfar, and G. Mohammadnezhad, “Synthesis of Fe3O4/ZrO2/ZnO nanoparticle for enhancing visible light photocatalytic and antibacterial activity,” J. Taiwan Inst. Chem. Eng., vol. 153, Dec. 2023, doi: 10.1016/j.jtice.2023.105213.

[6] A. Varghese, K. R. S. Devi, D. Pinheiro, and J. Jomy, “Electrochemical investigations of chitosan/ZrO2-Bi2O3 composite for advanced energy and environmental applications,” J. Environ. Chem. Eng., vol. 12, no. 5, 2024, Art. no. 113824, doi: 10.1016/j.jece.2024.113824.

[7] I. M. Sharaf, J. Laifi, S. Alraddadi, M. Saad, M. S. I. Koubesy, N. N. Elewa, H. Almohiy, and Y. M. Ismail, “Unraveling the effect of Cu doping on the structural and morphological properties and photocatalytic activity of ZrO2,” Heliyon, vol. 10, no. 1, 2024, Art. no. e23848, doi: 10.1016/j.heliyon.2023.e23848.

[8] P. Manikanta, N. S. Naik, A. M. Isloor, M. Padaki, B. M. Nagaraja, and S. Déon, “The efficacy of Fe-doped ZrO2 nanoparticles as a supplement in polysulfone membranes for toxic dye removal,” Process Saf. Environ. Prot., vol. 186, pp. 1460-1470, 2024, doi: 10.1016/j.psep.2024.04.083.

[9] S. P. Keerthana, R. Yuvakkumar, P. S. Kumar, G. Ravi, and D. Velauthapillai, “Nd doped ZrO2 photocatalyst for organic pollutants degradation in wastewater,” Environ. Technol. Innov., vol. 28, 2022, Art. no. 102851, doi: 10.1016/j.eti.2022.102851.

[10] C. Gionco, S. Hernandez, M. Castellino, T. A. Gadhi, J. A. Munoz-Tabares, E. Cerrato, A. Tagliaferro, N. Russo, and M. C. Paganini, “Synthesis and characterization of Ce and Er doped ZrO2 nanoparticles as solar light driven photocatalysts,” J. Alloys Compd., vol. 775, pp. 896-904, Feb. 2019, doi: 10.1016/j.jallcom.2018.10.046.

[11] E. S. Agorku, A. T. Kuvarega, B. B. Mamba, A. C. Pandey, and A. K. Mishra, “Enhanced visible-light photocatalytic activity of multi-elements-doped ZrO2 for degradation of indigo carmine,” J. Rare Earths, vol. 33, no. 5, pp. 498-506, May 2015, doi: 10.1016/S1002-0721(14)60447-6.

[12] J. Xie, L. Huang, R. Wang, S. Ye, and X. Song, “Novel visible light-responsive graphene oxide/Bi2WO6/starch composite membrane for efficient degradation of ethylene,” Carbohydr. Polym., vol. 246, 2020, Art. no. 116640, doi: 10.1016/j.carbpol.2020.116640.

[13] K. Sharma, V. Dutta, S. Sharma, P. Raizada, A. Hosseini-Bandegharaei, P. Thakur, and P. Singh, “Recent advances in enhanced photocatalytic activity of bismuth oxyhalides for efficient photocatalysis of organic pollutants in water: A review,” J. Ind. Eng. Chem., vol. 78, pp. 1-20, 2019, doi: 10.1016/j.jiec.2019.06.022.

[14] J. H. Lee, P. Velmurugan, A. V. Ravi, and B. T. Oh, “Green and hydrothermal assembly of reduced graphene oxide (rGO)-coated ZnO and Fe hybrid nanocomposite for the removal of nitrate and phosphate,” Environ. Chem. Ecotoxicol., vol. 2, pp. 141-149, 2020, doi: 10.1016/j.enceco.2020.08.001.

[15] K. Kaviyarasu, L. Kotsedi, A. Simo, X. Fuku, G. T. Mola, J. Kennedy, and M. Maaza, “Photocatalytic activity of ZrO2 doped lead dioxide nanocomposites: Investigation of structural and optical microscopy of RhB organic dye,” Appl. Surf. Sci., vol. 421, pp. 234-239, 2017, doi: 10.1016/j.apsusc.2016.11.149.

[16] P. Halder, I. Mondal, A. Mukherjee, S. Biswas, S. Sau, S. Mitra, B. K. Paul, D. Mondal, B. Chattopadhyay, and S. Das, “Te4+ and Er3+ doped ZrO2 nanoparticles with enhanced photocatalytic, antibacterial activity and dielectric properties: A next generation of multifunctional material,” J. Environ. Manage., vol. 359, 2024, Art. no. 120985, doi: 10.1016/j.jenvman.2024.120985.

[17] N. C. Manh, A. D. T. Tu, T. M. Xuan, L. N. T. Hien, N. B. Duc, L. N. T. To, D. H. T. Bach, L. T. Ha, and H. P. Van, “Enhanced Visible-Light Photocatalytic Degradation Efficiency of Ce4+ -Doped ZrO2/ZnO Nanocomposites Fabricated by a Simple Hydrothermal Method,” J. Electron. Mater., vol. 53, pp. 7655-7671, 2024, doi: 10.1007/s11664-024-11460-8.




DOI: https://doi.org/10.34238/tnu-jst.11618

Refbacks

  • There are currently no refbacks.
TNU Journal of Science and Technology
Rooms 408, 409 - Administration Building - Thai Nguyen University
Tan Thinh Ward - Thai Nguyen City
Phone: (+84) 208 3840 288 - E-mail: jst@tnu.edu.vn
Based on Open Journal Systems
©2018 All Rights Reserved