PRESENCE OF VIRULENCE AND ANTIBIOTIC RESISTANCE GENES IN ESCHERICHIA COLI ISOLATED FROM SWINE FARMS IN BEN TRE PROVINCE | Thống | TNU Journal of Science and Technology

PRESENCE OF VIRULENCE AND ANTIBIOTIC RESISTANCE GENES IN ESCHERICHIA COLI ISOLATED FROM SWINE FARMS IN BEN TRE PROVINCE

About this article

Received: 15/02/25                Revised: 10/08/25                Published: 11/08/25

Authors

1. Ngo Van Thong Email to author, Kien Giang University
2. Bui Thi Le Minh, College of Agriculture - Can Tho University
3. Nguyen Khanh Thuan, College of Agriculture - Can Tho University

Abstract


The study was conducted from March to August 2024 to investigate the prevalence of virulence and antibiotic resistance genes in Escherichia coli (E. coli) strains isolated from pigs in Ben Tre province. A total of 96 fecal samples were collected from sows, finishing pigs, and piglets at four pig farms. The overall isolation rate of E. coli was 93.75%. PCR analysis revealed the presence of virulence genes at the following rates: Stx1 (44.44%), Stx2 (63.33%), Lt (14.44%), Sta (42.22%), and Stb (43.33%). Simultaneously, antibiotic resistance genes were detected at high prevalence, including strA (84.44%), SulII (74.44%), tetA (81.11%), blaampC (78.89%), and blaTEM (53.33%). A total of 88.89% of the isolates carried one to five virulence genes, with the most common genotypic combinations being Stx1+Stx2+Sta and Stx1+Stx2+Stb (7.78%). All isolates carried at least one to five antibiotic resistance genes, with the most prevalent resistance genotypes being blaampC+tetA+SulII+strA (22.22%) and blaTEM + blaampC+tetA +SulII+StrA (23.33%). Notably, 88.89% of the isolates harbored both virulence and resistance genes, indicating a high potential risk to biosecurity and epidemiological safety in pig production systems.

Keywords


Virulence genes; Antibiotic resistance genes; Escherichia coli; Pig; Ben Tre

References


[1] V. Economou and P. Gousia, “Agriculture and food animals as a source of antimicrobial-resistant bacteria,” Infection and Drug Resistance, vol. 8, pp. 49-61, 2015.

[2] A. P. Magiorakos, A. Srinivasan, R. B. Carey, Y. Carmeli, M. E. Falagas, C. G.Giske, S. Harbarth, J. F. Hindler, G. Kahlmeter, B. Olsson-Liljequist, D. L. Paterson, L. B. Rice, J. Stelling, M. J. Struelens, A. Vatopoulos, J. T. Weber, and D. L. Monnet, “Multidrug-resistant, extensively drug-resistant and pan drug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance,” Clinical Microbiology and Infection, vol. 18, no. 3, pp. 268-281, 2012.

[3] P. C. Collignon, J. H. Powers, T. M. Chiller, A. Aidara-Kane, and F.M. Aarestrup, “World Health Organization ranking of antimicrobials according to their importance in human medicine: a critical step for developing risk management strategies for the use of antimicrobials in food production animals,” Clinical Infectious Diseases, vol. 49, pp .132-141, 2009.

[4] M. E. Filippitzi, B. Callens, B. Pardon, B. Persoons, and J. Dewulf, “Antimicrobial use in pigs, broilers, and veal calves in Belgium,” Vlaams Diergeneeskundig Tijdschrift, vol. 83, pp. 214–224, 2014.

[5] European Surveillance of Veterinary Antimicrobial Consumption, “Sales of veterinary antimicrobial agents in 31 European countries in 2018: trends from 2010 to 2018,” 10th ESVAC Report, 2020. [Online]. Available: https://www.ema.europa.eu/en/documents/report/sales-veterinary-antimicrobial-agents-31-european-countries-2018-trends-2010-2018- tenth-esvac-report_en.pdf. [Accessed February 2, 2025].

[6] A. Dawangpa, P. Lertwatcharasarakul, P. Ramasoota, A. Boonsoongnern, N. Ratanavanichrojn, A. Sanguankiat, S. Phatthanakunanan, and P. Tulayakul, “Genotypic and phenotypic situation of antimicrobial drug resistance of Escherichia coli in water and manure between biogas and non-biogas swine farms in central Thailand,” J. Environ. Manag., vol. 279, 2021, Art. no. 111659, doi: 10.1016/j.jenvman.2020.111659.

[7] N. A. Atlaw, S. Keelara, M. Correa, D. Foster, W. Gebreyes, A. Aidara-Kane, L. Harden, S. Thakur, and P. J. Fedorka-Cray, “Evidence of sheep and abattoir environment as important reservoirs of multidrug-resistant Salmonella and extended-spectrum beta-lactamase Escherichia coli,” Int. J. Food Microbiol., vol. 363, 2022, doi: 10.1016/j.ijfoodmicro.2021.109516.

[8] WHO, “Antimicrobial Resistance,” 2022. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance. [Accessed February 2, 2025].

[9] J. M. Fairbrother, E. Nadeau, and C. L. Gyles, “Escherichia coli in postweaning diarrhea in pigs: An update on bacterial types, pathogenesis, and prevention strategies,” Anim. Health Res. Rev., vol. 6, pp. 17–39, 2005.

[10] C. L. Gyles and J. M. Faibrother, “Escherichia coli,” in Pathogenesis of bacterial infections in animals, 4th. Ed., C. L. Gyles, J. F. Prescott, G. Songer, and C. O. Thoen (eds), Iowa State University Press, Ames, Iowa, 2010, doi: 10.1002/9780470958209.ch15.

[11] Veterinary Department, “Animal disease - Diagnostic procedure - Part 16: Edema disease in pig,” TCVN 8400-16:2011, 2011.

[12] A. I. Son, A. R. Binet, B. A. Maounounen-Laasri, C. A. Lin, S. Thomas, A. Hammack, A. Julie, and A. Kase, “Detection of five Shiga toxin-producing Escherichia coli genes with multiplex PCR,” Food Microbiology, vol. 40, pp. 31-40, 2014.

[13] G. Wang, C. G. Clark, and F. R. Rodgers, “Detection in Escherichia coli of the Genes Encoding the Major Virulence Factors, the Genes Defining the O157:H7 Serotype, and Components of the Type 2 Shiga Toxin Family by Multiplex PCR,” Journal of Clinical Microbiology, vol. 40, pp. 3613–3619, 2002, doi: 10.1128/JCM.40.10.3613–3619.2002.

[14] H. Vu-Khac, E. Holoda, E. Pilipcinec, M. Blanco, J. E. Blanco, G. Dahbi, A. Mora, C. Lo1pez, E. A. Gonzalez, and J. Blanco, “Serotypes, virulence genes, intimin types and PFGE profiles of Escherichia coli isolated from piglets with diarrhea in Slovakia,” Veterinary Journal, vol. 174, pp. 176-187, 2007.

[15] S. M. Franck, B. T. Bosworth, and H. W. Moon, “Multiplex PCR for Enterotoxigenic, Attaching, and Effacing, and Shiga Toxin-Producing Escherichia coli Strains from Calves,” Journal of Clinical Microbiology, vol. 36, pp. 1795–1797, 1998.

[16] L. Merkeviciene, C. B. Ambrozeviˇciene, G. Paškeviˇcius, A. Pikunien, M. Virgailis, J. Dailidaviˇciene, A. Daukšiene, R. Šiugždiniene, and M. Ruzauskas, “Serological Variety and Antimicrobial Resistance in Salmonella Isolated from Reptiles,” Biology, vol. 11, 2022, doi: 10.3390/biology11060836.

[17] S. P. Gow, C. L. Waldner, J. Harel, and P. Boerlin, “Associations between Antimicrobial Resistance Genes in Fecal Generic Escherichia coli Isolates from Cow-Calf Herds in Western Canada,” Applied and environmental microbiology, vol. 74, no. 12, pp. 3658–3666, 2008, doi: 10.1128/AEM.02505-07. 2008.

[18] R. S. Kurnia, A. Indrawati, N. L. P. I. Mayasari, and A. Priadi, “Molecular detection of genes encoding resistance to tetracycline and determination of plasmid-mediated resistance to quinolones in avian pathogenic Escherichia coli in Sukabumi, Indonesia,” Veterinary World, vol.11, pp.1581-1586, 2018.

[19] N. Caroff, E. Espaze, I. Berard, H. Richet, and A. Reynaud, “Mutations in the ampC promoter of Escherichia coli isolates resistant to oxyiminocephalosporins without extended spectrum β-lactamase production,” FEMS Microbiol. Lett, vol. 173, no. 2, pp. 459-465, 1999.

[20] A. Jouini, L. Vinue, K. B. Slama, Y. Sa´enz, N. Klibi, S. Hammami, A. Boudabous, and C. Torres, “Characterization of CTX-M and SHV extended-spectrum b-lactamases and associated resistance genes in Escherichia coli strains of food samples in Tunisia,” Journal of Antimicrobial Chemotherapy, vol. 60, pp. 1137–1141, 2007, doi: 10.1093/jac/dkm316.

[21] C. D. Nguyen and H. P. Cu, “Identify the pathogenic role of E. coli, Salmonella spp in diarrhea syndrome in post-weaning pigs in some localities of Lam Dong province,” Journal of Veterinary Science and Technology, vol. 18, no. 1, pp. 56-64, 2011.

[22] T. T. Vo, “Study to determine some virulence factors of Escherichia coli bacteria causing diarrhea in piglets in the South Central and Central Highlands regions,” PhD thesis in Agriculture, National Veterinary Institute, Hanoi, 2012.

[23] T. L. K. Ly, T. H. C. Nguyen, and T. L. Nguyen, “Survey on the infection rate and identification of antibiotics resistant genes of Enterotoxigenic Escherichia coli causing piglet diarrhea in Vinh Long and Dong Thap provinces,” Can Tho University Journal of Science Part B: Agriculture, Aquaculture and Biotechnology, vol. 39, pp. 7-17, 2015.

[24] X. A. Le, Q. V. Tran, X. H. Nguyen, X. L. Nguyen, and Q. L. Tran, “Virulence and antibiotic sensitivity of e. coli isolated from piglings with diarrhea in Huong Tra town, Thua Thien Hue province,” Hue University Journal of Science, vol. 126, no. 3A, pp. 161-168, 2017.

[25] W. Cha, M. F. Pina, E. R. Leah, S. B. Andrew, M. N. Jacqueline, D. M. Shannon, and A. F Julie. “Prevalence and characteristics of Shiga toxin-producing Escherichia coli in finishing pigs: Implications on public health,” International Journal of Food Microbiology, vol. 264, no. 2, pp. 8-15, 2018.

[26] B. Li, J. Y. Sun, L. Han, and X. H. Huang, “Prevalence of virulence genes of Shiga toxin-producing Escherichia coli (STEC) from swine in China,” Journal of Integrative Agriculture, vol. 19, no. 2, pp. 450-456, 2020.

[27] M. Evelyn, V. D. Edilbert, D. G. Henri, J. Mast, I. Ncube, J. Read, and S. Beeckmans, “Prevalence of enterotoxigenic Escherichia coli virulence genes from scouring piglets in Zimbabwe,” Trop. Anim. Health, vol. 41, pp. 1539–1547, 2009.

[28] M. M. CoSta, G. Drescher, F. Maboni, S. S. Weber, A. Schrank, M. H. Vainstein, I. S. Schrank, and A. C. Vargas, “Virulence factors, antimicrobial resiStance, and plasmid content of Escherichia coli isolated in swine commercial farms,” Arq. Bras. Med. Vet. Zootec, vol. 62, no. 1, pp. 30-36, 2010.

[29] K. H. Do, J. W. Byun, and W. K. Lee, “Virulence genes and antimicrobial resistance of pathogenic Escherichia coli isolated from diarrheic weaned piglets in Korea,” Journal Anim Science Technology, vol. 62, no. 4, pp. 543-552, 2020.

[30] A. Silva, V. Silva, J.E. Pereira, L. Maltez, G. Igrejas, P. Valentão, V. Falco, and P. Poeta, “Antimicrobial Resistance and Clonal Lineages of Escherichia coli from Food-Producing Animals,” Antibiotics, vol. 12, 2023, Art. no. 1061, doi: 10.3390/antibiotics12061061.

[31] W. Zhou, R. Lin, Z. Zhou, J. Ma, H. Lin, X. Zheng, J. Wang, J. Wu, Y. Dong, H. Jiang, H. Yang, Z. Yang, B. Tang, and M. Yue, “Antimicrobial resistance and genomic characterization of Escherichia coli from pigs and chickens in Zhejiang, China,” Front. Microbiol., vol. 13, 2022, Art. no. 1018682, doi: 10.3389/fmicb.2022.1018682.

[32] T. N. Nguyen, V. C Nguyen, G. Thwaites, and J. Carrique-Mas, “Antimicrobial Usage and Antimicrobial Resistance in Animal Production in Southeast Asia: A Review,” Antibiotics, vol. 5, no 37, doi:10.3390/antibiotics5040037, 2016.




DOI: https://doi.org/10.34238/tnu-jst.12062

Refbacks

  • There are currently no refbacks.
TNU Journal of Science and Technology
Rooms 408, 409 - Administration Building - Thai Nguyen University
Tan Thinh Ward - Thai Nguyen City
Phone: (+84) 208 3840 288 - E-mail: jst@tnu.edu.vn
Based on Open Journal Systems
©2018 All Rights Reserved