TUNABLE ELECTRONIC AND MECHANICAL PROPERTIES OF BCN MONOLAYER UNDER STRAIN AND ELECTRIC FIELDS
About this article
Received: 01/05/25                Revised: 22/05/25                Published: 22/05/25Abstract
Keywords
Full Text:
PDFReferences
[1] M. Marian, D. Berman, D. Nečas, N. Emani, A. Ruggiero, and A. Rosenkranz, “Roadmap for 2D Materials in Biotribological/Biomedical Applications-A Review,” Adv. Colloid. Interf. Sci., vol. 307, Sep. 2022, doi: 10.1016/j.cis.2022.102747.
[2] P. Kumbhakar et al., “Prospective applications of two-dimensional materials beyond laboratory frontiers: A review,” iScience, vol. 26, no. 5, May 2023, Art. no. 106671, doi: 10.1016/j.isci.2023.106671.
[3] D. Akinwande et al., “A Review on Mechanics and Mechanical Properties of 2D Materials-Graphene and Beyond,” Extreme Mech Lett., vol 13, May 2017, doi: 10.1016/j.eml.2017.01.008.
[4] C. Ye and Q. Peng, “Mechanical Stabilities and Properties of Graphene-like 2D III-Nitrides: A Review,” Crystals, vol. 13, no. 1, 2023, doi: 10.3390/cryst13010012.
[5] S. Thomas, M. S. Manju, K. M. Ajith, S. U. Lee, and M. A. Zaeem, “Strain-induced work function in h-BN and BCN monolayers,” Physica E. Low Dimens. Syst. Nanostruct, vol. 123, Sep. 2020, doi: 10.1016/j.physe.2020.114180.
[6] L. Zhu et al., “Tunable electronic and optical properties of two-dimensional SnTe/InBr van der Waals heterostructures: A first-principles study,” Surfaces and Interfaces, vol. 56, Jan. 2025, doi: 10.1016/j.surfin.2024.105715.
[7] Q. Wei and X. Peng, “Superior mechanical flexibility of phosphorene and few-layer black phosphorus,” Appl. Phys. Lett., vol. 104, no. 25, Jun. 2014, doi: 10.1063/1.4885215.
[8] S. Joseph et al., “A review of the synthesis, properties, and applications of 2D transition metal dichalcogenides and their heterostructures,” Mater Chem. Phys., vol. 297, Mar. 2023, Art. no. 127332, doi: 10.1016/j.matchemphys.2023.127332.
[9] S. Ahmed and J. Yi, “Two-dimensional transition metal dichalcogenides and their charge carrier mobilities in field-effect transistors,” Nanomicro Lett., vol. 9, no. 4, pp. 1–23, Oct. 2017, doi: 10.1007/s40820-017-0152-6.
[10] L. Meng, Y. Ma, K. Si, S. Xu, J. Wang, and Y. Gong, “Recent advances of phase engineering in group VI transition metal dichalcogenides,” Tungsten, vol. 1, pp. 46–58, 2019, doi: 10.1007/s42864-019-00012-x.
[11] X. Yin et al., “Recent developments in 2D transition metal dichalcogenides: Phase transition and applications of the (quasi-)metallic phases,” Chemical Society Reviews, vol. 18, 2021, doi: 10.1039/d1cs00236h.
[12] A. A. Tedstone, D. J. Lewis, and P. O’Brien, “Synthesis, Properties, and Applications of Transition Metal-Doped Layered Transition Metal Dichalcogenides,” Chem. Mater, vol. 28, pp. 1965-1974, Apr. 2016, doi: 10.1021/acs.chemmater.6b00430.
[13] T. H. Dinh, H. L. Nguyen, and V. T. Do, “DFT Study on the Electronic and Mechanical Properties of BCN Monolayer,” Lecture Note in Networks and Systems, vol. 943, pp. 472–477, 2024, doi: 10.1007/978-3-031-62238-0_49.
[14] Z. Ma, C. Tang, and C. Shi, “A New BCN Compound with Monoclinic Symmetry: First-Principle Calculations,” Materials, vol. 15, no. 9, May 2022, doi: 10.3390/ma15093186.
[15] Y. Lu, Y. Yu, X. Zhu, and M. Wang, “Two predicted two-dimensional BCN structures: A first-principles study,” Physica. E. Low Dimens. Syst. Nanostruct., vol. 125, Jan. 2021, doi: 10.1016/j.physe.2020.114413.
[16] V. K. Yadav, S. H. Mir, and J. K. Singh, “Density Functional Theory Study of Aspirin Adsorption on BCN Sheets and their Hydrogen Evolution Reaction Activity: a Comparative Study with Graphene and Hexagonal Boron Nitride,” ChemPhysChem, vol. 20, no. 5, pp. 687–694, Mar. 2019, doi: 10.1002/cphc.201801173.
[17] J. Wang and X. Luo, “Theoretical Investigation of the BCN Monolayer and Their Derivatives for Metal-free CO2 Photocatalysis, Capture, and Utilization,” ACS Omega, vol. 9, 2024, doi: 10.1021/acsomega.3c07795.
[18] R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford: Oxford University Press, 1989.
[19] R. M. Dreizler and E. K. U. Gross, Density Functional Theory, Berlin: Springer, 1990.
[20] P. Giannozzi et al., “QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials,” Journal of Physics Condensed Matter, vol. 21, no. 39, 2009, doi: 10.1088/0953-8984/21/39/395502.
[21] D. Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism,” Phys. Rev. B, vol. 41, Apr. 1990, doi: 10.1103/PhysRevB.41.7892.
[22] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett., vol. 77, Oct. 1996, doi: 10.1103/PhysRevLett.77.3865.
[23] H. J. Monkhorst and J. D. Pack, “Special points for Brillonin-zone integrations,” Phys. Rev. B, vol. 13, Jun. 1976, doi: 10.1103/PhysRevB.13.5188.
[24] A. D. Corso, “Clean Ir(111) and Pt(111) electronic surface states: A first-principle fully relativistic investigation,” Surf. Sci., vol. 637–638, pp. 106–115, Jul. 2015, doi: 10.1016/j.susc.2015.03.013.
[25] A. Bafekry et al., “A novel two-dimensional boron-carbon-nitride (BCN) monolayer: A first-principles insight,” J. Appl. Phys., vol. 130, no. 11, Sep. 2021, doi: 10.1063/5.0062323.
[26] F. Mouhat and F. X. Coudert, “Necessary and sufficient elastic stability conditions in various crystal systems,” Phys. Rev. B Condens. Matter. Mater. Phys., vol. 90, no. 22, Dec. 2014, doi: 10.1103/PhysRevB.90.224104.
DOI: https://doi.org/10.34238/tnu-jst.12710
Refbacks
- There are currently no refbacks.





