POTENTIAL APPLICATION OF NATURAL COMPOUNDS FROM MICROALGAE Euglena gracilis IN SKIN REGENERATION | Nghĩa | TNU Journal of Science and Technology

POTENTIAL APPLICATION OF NATURAL COMPOUNDS FROM MICROALGAE Euglena gracilis IN SKIN REGENERATION

About this article

Received: 25/08/25                Revised: 02/12/25                Published: 03/12/25

Authors

1. Thai Hieu Nghia, Far Eastern Federal University
2. Nguyen Co Minh, Le Hong Phong High School for the Gifted
3. Truong Minh Khai Email to author, Ho Chi Minh city University of Education

Abstract


This article reviews and evaluates the scientific evidence on the potential application of natural compounds extracted from the microalga Euglena gracilis in skin regeneration and wound healing, with the objective of establishing a scientific foundation for their consideration as alternatives to conventional dermatological treatments. A systematic literature review was conducted, in which data from published studies were collected, analyzed, and synthesized. The review emphasizes the identification of bioactive compounds, their mechanisms of action at the cellular and tissue levels, and experimental evidence of their efficacy. The findings indicate that E. gracilis is a rich source of diverse and valuable compounds, including β-1,3-D-glucan, extracellular vesicles  (EVs), monohexosylceramide, fatty acids (DHA, EPA), carotenoids, and vitamins (E, C) all of which demonstrate beneficial effects on the skin. Accordingly, Euglena gracilis represents  a promising vegan source for the development of advanced dermatological therapies, aligning with the increasing demand for natural, safe, and sustainable ingredients.

Keywords


Euglena gracilis; Natural compounds; Skin regeneration; Extracellular vesicles; Microalgae

References


[1] A. Gissibl, A. Sun, A. Care, H. Nevalainen, and A. Sunna, “Bioproducts from Euglena gracilis: Synthesis and Applications,” Front. Bioeng. Biotechnol., vol. 7, May 2019, Art. no. 108, doi: 10.3389/fbioe.2019.00108.

[2] S. Coiai, E. Passaglia, A. Telleschi, W. Oberhauser, M.-B. Coltelli, and F. Cicogna, “A Sustainable Multistage Process for Immobilizing Bioactive Compounds on Layered Double Hydroxides,” Cosmetics, vol. 11, no. 2, Apr. 2024, Art. no. 52, doi: 10.3390/cosmetics11020052.

[3] R. Harada, T. Nomura, K. Yamada, K. Mochida, and K. Suzuki, “Genetic Engineering Strategies for Euglena gracilis and Its Industrial Contribution to Sustainable Development Goals: A Review,” Front. Bioeng. Biotechnol., vol. 8, Jul. 2020, Art. no. 790, doi: 10.3389/fbioe.2020.00790.

[4] Siddhnath et al., “Bioactive compounds from micro-algae and its application in foods: A review,” Discov. Food, vol. 4, no. 1, May 2024, Art. no. 27, doi: 10.1007/s44187-024-00096-6.

[5] A. C. González, “Algas y cianoprocariotas de las aguas dulces de Cuba I: Euglenales pigmentadas (Euglenophyceae, Euglenophyta),” 2006. [Online]. Available: https://www.semanticscholar.org/paper/Algas-y-cianoprocariotas-de-las-aguas-dulces-de-I%3A-Gonz%C3%A1lez/b26b90d8c50c914ec9b007cf6c347803ef7b192b. [Accessed Jun. 29, 2025].

[6] S. Mackay, “Identification of the genes encoding enzymes involved in the synthesis of the biopolymer paramylon from Euglena gracilis,” Dec. 2010. [Online]. Available: https://www.semanticscholar.org/paper/Identification-of-the-genes-encoding-enzymes-in-the-Mackay/9912818172ad4972fa9df7d89b380c1d59824e82. [Accessed Jun. 29, 2025].

[7] J. Li et al., “Euglena gracilis and Its Aqueous Extract Constructed with Chitosan-Hyaluronic Acid Hydrogel Facilitate Cutaneous Wound Healing in Mice Without Inducing Excessive Inflammatory Response,” Front. Bioeng. Biotechnol., vol. 9, Dec. 2021, Art. no. 713840, doi: 10.3389/fbioe.2021.713840.

[8] C. Li et al., “Microalgae in health care and functional foods: β-glucan applications, innovations in drug delivery and synthetic biology,” Front. Pharmacol., vol. 16, Mar. 2025, Art. no. 1557298, doi: 10.3389/fphar.2025.1557298.

[9] P. Brun, A. Piovan, R. Caniato, V. Dalla Costa, A. Pauletto, and R. Filippini, “Anti-Inflammatory Activities of Euglena gracilis Extracts,” Microorganisms, vol. 9, no. 10, Sep. 2021, Art. no. 2058, doi: 10.3390/microorganisms9102058.

[10] M. Stoyneva-Gärtner, B. Uzunov, and G. Gärtner, “A Spotlight on the Potential of Microscopic Motile Algae as Novel Sources for Modern Cosmetic Products,” Cosmetics, vol. 11, no. 4, Jul. 2024, Art. no. 115, doi: 10.3390/cosmetics11040115.

[11] L. A. Elfawy et al., “Sustainable Approach of Functional Biomaterials–Tissue Engineering for Skin Burn Treatment: A Comprehensive Review,” Pharmaceuticals, vol. 16, no. 5, May 2023, Art. no. 701, doi: 10.3390/ph16050701.

[12] Y. Ko et al., “Nonanimal Euglena gracilis ‐Derived Extracellular Vesicles Enhance Skin‐Regenerative Wound Healing,” Adv. Mater. Interfaces, vol. 10, no. 4, Feb. 2023, Art. no. 2202255, doi: 10.1002/admi.202202255.

[13] J. Majtan and M. Jesenak, “β-Glucans: Multi-Functional Modulator of Wound Healing,” Molecules, vol. 23, no. 4, Apr. 2018, Art. no. 806, doi: 10.3390/molecules23040806.

[14] N. Zhang et al., “Identification of Monohexosylceramides from Euglena gracilis by Electrospray Ionization Mass Spectrometry,” Nat. Prod. Commun., vol. 15, no. 8, Aug. 2020, Art. no. 1934578X20942351, doi: 10.1177/1934578X20942351.

[15] A. Sugiyama et al., “Oral Administration of Paramylon, a .BETA.-1,3-D-Glucan Isolated from Euglena gracilis Z Inhibits Development of Atopic Dermatitis-Like Skin Lesions in NC/Nga Mice,” J. Vet. Med. Sci., vol. 72, no. 6, pp. 755–763, 2010, doi: 10.1292/jvms.09-0526.

[16] Y. Uchida and K. Park, “Ceramides in Skin Health and Disease: An Update,” Am. J. Clin. Dermatol., vol. 22, no. 6, pp. 853–866, Nov. 2021, doi: 10.1007/s40257-021-00619-2.

[17] M. Reuter, E. Joseph, G. Lian, and D. J. Lunter, “Presence of Different Ceramide Species Modulates Barrier Function and Structure of Stratum Corneum Lipid Membranes: Insights from Molecular Dynamics Simulations,” Mol. Pharm., vol. 22, no. 7, pp. 4280–4292, Jun. 2025, doi: 10.1021/acs.molpharmaceut.5c00580.

[18] M. J. Choi and H. I. Maibach, “Role of Ceramides in Barrier Function of Healthy and Diseased Skin,” Am. J. Clin. Dermatol., vol. 6, no. 4, pp. 215–223, 2005, doi: 10.2165/00128071-200506040-00002.

[19] N. I. Ghazali, R. Z. Mohd Rais, S. Makpol, K. Y. Chin, W. N. Yap, and J. A. Goon, “Effects of tocotrienol on aging skin: A systematic review,” Front. Pharmacol., vol. 13, Oct. 2022, Art. no. 1006198, doi: 10.3389/fphar.2022.1006198.

[20] G. Bai, T. M. Truong, G. N. Pathak, L. Benoit, and B. Rao, “Clinical Applications of Exosomes in Cosmetic Dermatology,” Skin Health Dis., vol. 4, no. 6, Dec. 2024, Art. no. ski2.348, doi: 10.1002/ski2.348.

[21] Y. Sawada, N. Saito-Sasaki, and M. Nakamura, “Omega 3 Fatty Acid and Skin Diseases,” Front. Immunol., vol. 11, Feb. 2021, Art. no. 623052, doi: 10.3389/fimmu.2020.623052.

[22] J.-Y. Lin, L.-J. Ma, J.-P. Yuan, P. Yu, and B.-X. Bai, “Causal effects of fatty acids on atopic dermatitis: A Mendelian randomization study,” Front. Nutr., vol. 10, Feb. 2023, Art. no. 1083455, doi: 10.3389/fnut.2023.1083455.

[23] J. C. McDaniel, K. Massey, and A. Nicolaou, “Fish oil supplementation alters levels of lipid mediators of inflammation in microenvironment of acute human wounds,” Wound Repair Regen., vol. 19, no. 2, pp. 189-200, Mar. 2011, doi: 10.1111/j.1524-475X.2010.00659.x.

[24] R. Yao, W. Fu, M. Du, Z.-X. Chen, A.-P. Lei, and J.-X. Wang, “Carotenoids Biosynthesis, Accumulation, and Applications of a Model Microalga Euglenagracilis,” Mar. Drugs, vol. 20, no. 8, Jul. 2022, Art. no. 496, doi: 10.3390/md20080496.

[25] Y. Ma et al., “Carotenoids in Skin Photoaging: Unveiling Protective Effects, Molecular Insights, and Safety and Bioavailability Frontiers,” Antioxidants, vol. 14, no. 5, May 2025, Art. no. 577, doi: 10.3390/antiox14050577.

[26] A. Piovan et al., “Carotenoid Extract Derived from Euglena gracilis Overcomes Lipopolysaccharide-Induced Neuroinflammation in Microglia: Role of NF-κB and Nrf2 Signaling Pathways,” Mol. Neurobiol., vol. 58, no. 7, pp. 3515–3528, Jul. 2021, doi: 10.1007/s12035-021-02353-6.

[27] W. D. Dolphin, “Photoinduced Carotenogenesis in Chlorotic Euglena gracilis,” Plant Physiol., vol. 46, no. 5, pp. 685–691, Nov. 1970, doi: 10.1104/pp.46.5.685.

[28] H. Takeyama, A. Kanamaru, Y. Yoshino, H. Kakuta, Y. Kawamura, and T. Matsunaga, “Production of antioxidant vitamins, β-carotene, vitamin C, and vitamin E, by two-step culture of Euglena gracilis Z,” Biotechnol. Bioeng., vol. 53, no. 2, pp. 185–190, Jan. 1997, doi: 10.1002/(SICI)1097-0290(19970120)53:2<185::AID-BIT8>3.0.CO;2-K.

[29] R. Amelia, A. Budiman, A. P. Nugroho, and E. A. Suyono, “Impact of salt stress on the α-tocopherol, carotenoid derivatives and flocculation efficiency of Euglena sp., Indonesian Strain,” Fish. Aquat. Sci., vol. 27, no. 6, pp. 379–391, Jun. 2024, doi: 10.47853/FAS.2024.e37.




DOI: https://doi.org/10.34238/tnu-jst.13481

Refbacks

  • There are currently no refbacks.
TNU Journal of Science and Technology
Rooms 408, 409 - Administration Building - Thai Nguyen University
Tan Thinh Ward - Thai Nguyen City
Phone: (+84) 208 3840 288 - E-mail: jst@tnu.edu.vn
Based on Open Journal Systems
©2018 All Rights Reserved