POTENTIAL APPLICATION OF NATURAL COMPOUNDS FROM MICROALGAE Euglena gracilis IN SKIN REGENERATION
About this article
Received: 25/08/25                Revised: 02/12/25                Published: 03/12/25Abstract
Keywords
Full Text:
PDF (Tiếng Việt)References
[1] A. Gissibl, A. Sun, A. Care, H. Nevalainen, and A. Sunna, “Bioproducts from Euglena gracilis: Synthesis and Applications,” Front. Bioeng. Biotechnol., vol. 7, May 2019, Art. no. 108, doi: 10.3389/fbioe.2019.00108.
[2] S. Coiai, E. Passaglia, A. Telleschi, W. Oberhauser, M.-B. Coltelli, and F. Cicogna, “A Sustainable Multistage Process for Immobilizing Bioactive Compounds on Layered Double Hydroxides,” Cosmetics, vol. 11, no. 2, Apr. 2024, Art. no. 52, doi: 10.3390/cosmetics11020052.
[3] R. Harada, T. Nomura, K. Yamada, K. Mochida, and K. Suzuki, “Genetic Engineering Strategies for Euglena gracilis and Its Industrial Contribution to Sustainable Development Goals: A Review,” Front. Bioeng. Biotechnol., vol. 8, Jul. 2020, Art. no. 790, doi: 10.3389/fbioe.2020.00790.
[4] Siddhnath et al., “Bioactive compounds from micro-algae and its application in foods: A review,” Discov. Food, vol. 4, no. 1, May 2024, Art. no. 27, doi: 10.1007/s44187-024-00096-6.
[5] A. C. González, “Algas y cianoprocariotas de las aguas dulces de Cuba I: Euglenales pigmentadas (Euglenophyceae, Euglenophyta),” 2006. [Online]. Available: https://www.semanticscholar.org/paper/Algas-y-cianoprocariotas-de-las-aguas-dulces-de-I%3A-Gonz%C3%A1lez/b26b90d8c50c914ec9b007cf6c347803ef7b192b. [Accessed Jun. 29, 2025].
[6] S. Mackay, “Identification of the genes encoding enzymes involved in the synthesis of the biopolymer paramylon from Euglena gracilis,” Dec. 2010. [Online]. Available: https://www.semanticscholar.org/paper/Identification-of-the-genes-encoding-enzymes-in-the-Mackay/9912818172ad4972fa9df7d89b380c1d59824e82. [Accessed Jun. 29, 2025].
[7] J. Li et al., “Euglena gracilis and Its Aqueous Extract Constructed with Chitosan-Hyaluronic Acid Hydrogel Facilitate Cutaneous Wound Healing in Mice Without Inducing Excessive Inflammatory Response,” Front. Bioeng. Biotechnol., vol. 9, Dec. 2021, Art. no. 713840, doi: 10.3389/fbioe.2021.713840.
[8] C. Li et al., “Microalgae in health care and functional foods: β-glucan applications, innovations in drug delivery and synthetic biology,” Front. Pharmacol., vol. 16, Mar. 2025, Art. no. 1557298, doi: 10.3389/fphar.2025.1557298.
[9] P. Brun, A. Piovan, R. Caniato, V. Dalla Costa, A. Pauletto, and R. Filippini, “Anti-Inflammatory Activities of Euglena gracilis Extracts,” Microorganisms, vol. 9, no. 10, Sep. 2021, Art. no. 2058, doi: 10.3390/microorganisms9102058.
[10] M. Stoyneva-Gärtner, B. Uzunov, and G. Gärtner, “A Spotlight on the Potential of Microscopic Motile Algae as Novel Sources for Modern Cosmetic Products,” Cosmetics, vol. 11, no. 4, Jul. 2024, Art. no. 115, doi: 10.3390/cosmetics11040115.
[11] L. A. Elfawy et al., “Sustainable Approach of Functional Biomaterials–Tissue Engineering for Skin Burn Treatment: A Comprehensive Review,” Pharmaceuticals, vol. 16, no. 5, May 2023, Art. no. 701, doi: 10.3390/ph16050701.
[12] Y. Ko et al., “Nonanimal Euglena gracilis ‐Derived Extracellular Vesicles Enhance Skin‐Regenerative Wound Healing,” Adv. Mater. Interfaces, vol. 10, no. 4, Feb. 2023, Art. no. 2202255, doi: 10.1002/admi.202202255.
[13] J. Majtan and M. Jesenak, “β-Glucans: Multi-Functional Modulator of Wound Healing,” Molecules, vol. 23, no. 4, Apr. 2018, Art. no. 806, doi: 10.3390/molecules23040806.
[14] N. Zhang et al., “Identification of Monohexosylceramides from Euglena gracilis by Electrospray Ionization Mass Spectrometry,” Nat. Prod. Commun., vol. 15, no. 8, Aug. 2020, Art. no. 1934578X20942351, doi: 10.1177/1934578X20942351.
[15] A. Sugiyama et al., “Oral Administration of Paramylon, a .BETA.-1,3-D-Glucan Isolated from Euglena gracilis Z Inhibits Development of Atopic Dermatitis-Like Skin Lesions in NC/Nga Mice,” J. Vet. Med. Sci., vol. 72, no. 6, pp. 755–763, 2010, doi: 10.1292/jvms.09-0526.
[16] Y. Uchida and K. Park, “Ceramides in Skin Health and Disease: An Update,” Am. J. Clin. Dermatol., vol. 22, no. 6, pp. 853–866, Nov. 2021, doi: 10.1007/s40257-021-00619-2.
[17] M. Reuter, E. Joseph, G. Lian, and D. J. Lunter, “Presence of Different Ceramide Species Modulates Barrier Function and Structure of Stratum Corneum Lipid Membranes: Insights from Molecular Dynamics Simulations,” Mol. Pharm., vol. 22, no. 7, pp. 4280–4292, Jun. 2025, doi: 10.1021/acs.molpharmaceut.5c00580.
[18] M. J. Choi and H. I. Maibach, “Role of Ceramides in Barrier Function of Healthy and Diseased Skin,” Am. J. Clin. Dermatol., vol. 6, no. 4, pp. 215–223, 2005, doi: 10.2165/00128071-200506040-00002.
[19] N. I. Ghazali, R. Z. Mohd Rais, S. Makpol, K. Y. Chin, W. N. Yap, and J. A. Goon, “Effects of tocotrienol on aging skin: A systematic review,” Front. Pharmacol., vol. 13, Oct. 2022, Art. no. 1006198, doi: 10.3389/fphar.2022.1006198.
[20] G. Bai, T. M. Truong, G. N. Pathak, L. Benoit, and B. Rao, “Clinical Applications of Exosomes in Cosmetic Dermatology,” Skin Health Dis., vol. 4, no. 6, Dec. 2024, Art. no. ski2.348, doi: 10.1002/ski2.348.
[21] Y. Sawada, N. Saito-Sasaki, and M. Nakamura, “Omega 3 Fatty Acid and Skin Diseases,” Front. Immunol., vol. 11, Feb. 2021, Art. no. 623052, doi: 10.3389/fimmu.2020.623052.
[22] J.-Y. Lin, L.-J. Ma, J.-P. Yuan, P. Yu, and B.-X. Bai, “Causal effects of fatty acids on atopic dermatitis: A Mendelian randomization study,” Front. Nutr., vol. 10, Feb. 2023, Art. no. 1083455, doi: 10.3389/fnut.2023.1083455.
[23] J. C. McDaniel, K. Massey, and A. Nicolaou, “Fish oil supplementation alters levels of lipid mediators of inflammation in microenvironment of acute human wounds,” Wound Repair Regen., vol. 19, no. 2, pp. 189-200, Mar. 2011, doi: 10.1111/j.1524-475X.2010.00659.x.
[24] R. Yao, W. Fu, M. Du, Z.-X. Chen, A.-P. Lei, and J.-X. Wang, “Carotenoids Biosynthesis, Accumulation, and Applications of a Model Microalga Euglenagracilis,” Mar. Drugs, vol. 20, no. 8, Jul. 2022, Art. no. 496, doi: 10.3390/md20080496.
[25] Y. Ma et al., “Carotenoids in Skin Photoaging: Unveiling Protective Effects, Molecular Insights, and Safety and Bioavailability Frontiers,” Antioxidants, vol. 14, no. 5, May 2025, Art. no. 577, doi: 10.3390/antiox14050577.
[26] A. Piovan et al., “Carotenoid Extract Derived from Euglena gracilis Overcomes Lipopolysaccharide-Induced Neuroinflammation in Microglia: Role of NF-κB and Nrf2 Signaling Pathways,” Mol. Neurobiol., vol. 58, no. 7, pp. 3515–3528, Jul. 2021, doi: 10.1007/s12035-021-02353-6.
[27] W. D. Dolphin, “Photoinduced Carotenogenesis in Chlorotic Euglena gracilis,” Plant Physiol., vol. 46, no. 5, pp. 685–691, Nov. 1970, doi: 10.1104/pp.46.5.685.
[28] H. Takeyama, A. Kanamaru, Y. Yoshino, H. Kakuta, Y. Kawamura, and T. Matsunaga, “Production of antioxidant vitamins, β-carotene, vitamin C, and vitamin E, by two-step culture of Euglena gracilis Z,” Biotechnol. Bioeng., vol. 53, no. 2, pp. 185–190, Jan. 1997, doi: 10.1002/(SICI)1097-0290(19970120)53:2<185::AID-BIT8>3.0.CO;2-K.
[29] R. Amelia, A. Budiman, A. P. Nugroho, and E. A. Suyono, “Impact of salt stress on the α-tocopherol, carotenoid derivatives and flocculation efficiency of Euglena sp., Indonesian Strain,” Fish. Aquat. Sci., vol. 27, no. 6, pp. 379–391, Jun. 2024, doi: 10.47853/FAS.2024.e37.DOI: https://doi.org/10.34238/tnu-jst.13481
Refbacks
- There are currently no refbacks.





