GASIFICATION OF COFFEE HUSK UNDER VARIOUS INDUSTRIAL RELEVANT ATMOSPHERES | Nam | TNU Journal of Science and Technology

GASIFICATION OF COFFEE HUSK UNDER VARIOUS INDUSTRIAL RELEVANT ATMOSPHERES

About this article

Received: 22/06/21                Revised: 20/11/21                Published: 24/11/21

Authors

1. Nguyen Hong Nam Email to author, University of Science and Technology – Viet Nam Academy of Science and Technology
2. Cao Thi Anh Ngoc, University of Science and Technology – Viet Nam Academy of Science and Technology

Abstract


The abundant coffee husk residue in Vietnam could become a potential feedstock for gasification with the help of a complete engineering profile established. This study investigated the coffee husk characteristics and its thermal behaviors during gasification.  high volatile matter of 70.8 % and a high ash content of 9.2 % were recorded for coffee husk. The engineering properties of the biomass were determined by ASTM methods, while the thermal behavior was determined by a Macro-TGA system. The higher heating value was 18.6 MJkg-1, which is comparable with common woody biomass. The degradation of coffee husk began at 245oC and achieved the maximum weight loss rate (Rmax = 0.4%oC-1) at 310oC. Coffee husk char gasification kinetics under various atmospheres relevant to industrial processes were quantified. Database and results from this study would provide useful information for the design or modeling of an efficient coffee husk gasifier.

Keywords


Biomass; Coffee husk; Gasification; Kinetics; Thermal behavior

References


[1] V. Byrareddy, L. Kouadio, S. Mushtaq, J. Kath, and R. Stone, “Coping with drought: Lessons learned from robusta coffee growers in Vietnam,” Climate Services, vol. 22, Apr. 2021, Art. no. 100229, doi: 10.1016/j.cliser.2021.100229.

[2] P. S. Murthy and M. M. Naidu, “Sustainable management of coffee industry by-products and value addition—A review,” Resources, Conservation and Recycling, vol. 66, pp. 45-58, Sep. 2012, doi: 10.1016/j.resconrec.2012.06.005.

[3] N. A. Dzung, T. T. Dzung, and V. T. P. Khanh, “Evaluation of Coffee Husk Compost for Improving Soil Fertility and Sustainable Coffee Production in Rural Central Highland of Vietnam,” Resources and Environment, vol. 3, no. 4, pp. 77-82, 2013.

[4] W. E. Oliveira, A. S. Franca, L. S. Oliveira, and S. D. Rocha, “Untreated coffee husks as biosorbents for the removal of heavy metals from aqueous solutions,” Journal of Hazardous Materials, vol. 152, no. 3, pp. 1073-1081, Apr. 2008, doi: 10.1016/j.jhazmat.2007.07.085.

[5] L. Wilson, G. R. John, C. F. Mhilu, W. Yang, and W. Blasiak, “Coffee husks gasification using high temperature air/steam agent,” Fuel Processing Technology, vol. 91, no. 10, pp. 1330-1337, Oct. 2010, doi: 10.1016/j.fuproc.2010.05.003.

[6] H. N. Nguyen, P. L. T. Nguyen, V. B. Tran, “Zero-waste biomass gasification: Use of residues after gasification of bagasse pellets as CO2 adsorbents,” Thermal Science and Engineering Progress, vol. 26, no 04, pp. 1-10, 2021, doi: 10.1016/j.tsep.2021.101080.

[7] H. N. Nguyen and T. Tsubota, “Complete parametric study of bagasse pellets during high-temperature steam gasification,” J. Thermal Sci. Eng. Appl, vol. 12, no. 4, pp. 1-7, 2021, doi: 10.1115/1.4045698.

[8] H. N. Nguyen et al., “Kinetic and structural changes during gasification of cashew nut shell char particles,” Environmental Progress & Sustainable Energy, vol. 40, no. 03, Art. no. e13580, doi: https://doi.org/10.1002/ep.13580.

[9] H. N Nguyen, D. A. Khuong, and G. T. T. Le, “Waste to energy: investigation of characteristics and thermal behaviors of wastes,” TNU Journal of Science and Technology, vol. 225, no. 02, 3-9, Feb. 2020, doi: 10.34238/tnu-jst.2020.02.2170.

[10] H. L Nguyen, D. D. Le, H. N. Nguyen, and V. T. Trinh, “Thermal Behavior of Woody Biomass in a Low Oxygen Atmosphere Using Macro-Thermogravimetric Analysis,” GMSARN International Journal, vol. 14, pp. 37-41, 2020.

[11] C. Setter, F. A. Borges, C. R. Cardoso, R. F. Mendes, and T. J. P. Oliveira, “Energy quality of pellets produced from coffee residue: Characterization of the products obtained via slow pyrolysis,” Industrial Crops and Products, vol. 154, Oct. 2020, Art. no. 112731, doi: 10.1016/j.indcrop.2020.112731.

[12] C. Rodriguez and G. Gordillo, “Adiabatic Gasification and Pyrolysis of Coffee Husk Using Air-Steam for Partial Oxidation,” Journal of Combustion, vol. 2011, 2011, Art. no. e303168, doi: 10.1155/2011/303168.

[13] C. F. Mhilu, “Analysis of Energy Characteristics of Rice and Coffee Husks Blends,” ISRN Chemical Engineering, vol. 2014, Mar. 2014, Art. no. e196103, doi: 10.1155/2014/196103.

[14] J. Bonilla, G. Gordillo, and C. Cantor, “Experimental Gasification of Coffee Husk Using Pure Oxygen-Steam Blends,” Front. Energy Res., vol. 7, 2019, doi: 10.3389/fenrg.2019.00127.

[15] H. N. Nguyen, V. L. Nguyen, D. D. Le, and T. T. H. Vu, “Physico-chemical characterization of forest and agricultural residues for energy conversion processes,” Vietnam Journal of Chemistry, vol. 58, no. 6, pp. 735-741, 2020, doi: https://doi.org/10.1002/vjch.202000054.

[16] A. A. Ayalew and T. A. Aragaw, “Utilization of treated coffee husk as low-cost bio-sorbent for adsorption of methylene blue,” Adsorption Science & Technology, vol. 38, no. 5-6, pp. 205-222, Jul. 2020, doi: 10.1177/0263617420920516.

[17] B. Günther, K. Gebauer, R. Barkowski, M. Rosenthal, and C.-T. Bues, “Calorific value of selected wood species and wood products,” Eur. J. Wood Prod., vol. 70, no. 5, pp. 755-757, Sep. 2012, doi: 10.1007/s00107-012-0613-z.

[18] H. N. Nguyen, L. V. D. Steene, and D. D. Le, “Kinetics of rice husk char gasification in an H2O or a CO2 atmosphere,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 40, no. 14, pp. 1701-1713, Jul. 2018, doi: 10.1080/15567036.2018.1486900.

[19] J. P. Tagutchou, L. V. de steene, F. J. E. Sanz, and S. Salvador, “Gasification of Wood Char in Single and Mixed Atmospheres of H2O and CO2,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 35, no. 13, pp. 1266-1276, Jul. 2013, doi: 10.1080/15567036.2010.542438.

[20] R. C. Everson, H. W. J. P. Neomagus, H. Kasaini, and D. Njapha, “Reaction kinetics of pulverized coal-chars derived from inertinite-rich coal discards: Gasification with carbon dioxide and steam,” Fuel, vol. 85, no. 7, pp. 1076-1082, May 2006, doi: 10.1016/j.fuel.2005.10.016.

[21] Z. Huang et al., “Kinetic studies of char gasification by steam and CO2 in the presence of H2 and CO,” Fuel Processing Technology, vol. 91, no. 8, pp. 843-847, Aug. 2010, doi: 10.1016/j.fuproc.2009.12.020.

[22] Y. Bai, Y. Wang, S. Zhu, L. Yan, F. Li, and K. Xie, “Synergistic effect between CO2 and H2O on reactivity during coal chars gasification,” Fuel, vol. 126, pp. 1-7, Jun. 2014, doi: 10.1016/j.fuel.2014.02.025.

[23] C. Guizani, M. Jeguirim, R. Gadiou, F. J. Escudero Sanz, and S. Salvador, “Biomass char gasification by H2O, CO2 and their mixture: Evolution of chemical, textural and structural properties of the chars,” Energy, vol. 112, pp. 133-145, Oct. 2016, doi: 10.1016/j.energy.2016.06.065.

[24] D. G. Roberts and D. J. Harris, “Char gasification in mixtures of CO2 and H2O: Competition and inhibition,” Fuel, vol. 86, no. 17, pp. 2672-2678, Dec. 2007, doi: 10.1016/j.fuel.2007.03.019.




DOI: https://doi.org/10.34238/tnu-jst.4679

Refbacks

  • There are currently no refbacks.
TNU Journal of Science and Technology
Rooms 408, 409 - Administration Building - Thai Nguyen University
Tan Thinh Ward - Thai Nguyen City
Phone: (+84) 208 3840 288 - E-mail: jst@tnu.edu.vn
Based on Open Journal Systems
©2018 All Rights Reserved