AN EFFECTIVE METHOD COMBINING DEEP LEARNING MODELS AND REINFORCEMENT LEARNING TECHNOLOGY FOR EXTRACTIVE TEXT SUMMARIZATION | Tuấn | TNU Journal of Science and Technology

AN EFFECTIVE METHOD COMBINING DEEP LEARNING MODELS AND REINFORCEMENT LEARNING TECHNOLOGY FOR EXTRACTIVE TEXT SUMMARIZATION

About this article

Received: 13/07/21                Revised: 12/08/21                Published: 12/08/21

Authors

1. Luu Minh Tuan, Hanoi University of Science and Technology; National Economics University
2. Le Thanh Huong Email to author, Hanoi University of Science and Technology
3. Hoang Minh Tan, Hanoi University of Science and Technology

Abstract


Automatic text summarization is an important problem in natural language processing. Text summarization extracts the most important information from one or many source texts to generate a brief, concise summary that still retains main ideas, correct grammar and ensures the coherence of the text. With the application of machine learning techniques as well as deep learning models in automatic text summarization models gave summaries that were closely resemble human reference summaries. In this paper, we propose an effective extractive text summarization method by combining the deep learning models, the reinforcement learning technique and MMR method to generate the summary. Our proposed method is experimented on CNN dataset (English) and Baomoi dataset (Vietnamese) giving F1-score accuracy results with Rouge-1, Rouge-2, Rouge-L are 31.36%, 12.84%, 28.33% and 51.95%, 24.38%, 37.56%, respectively. The experimental results show that our proposed summarization method has achieved good results for English and Vietnamese text summarization.

Keywords


Text summarization; Reinforcement learning; BERT model; CNN; GRU

References


[1] M. Wasson, “Using leading text for news summaries: Evaluation results and implications for commercial summarization applications,” Proceedings of COLING 1998 vol. 2: The 17th International Conference on Computational Linguistics, 1998, pp. 1364-1368.

[2] G. Erkan and D. R. Radev, “LexRank: Graph-based Lexical Centrality as Salience in Text Summarization,” Journal of Artificial Intelligence Research, vol. 22, pp. 457-479, 2004.

[3] R. Mihalcea and P. Tarau, "TextRank: Bringing Order into Texts," Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, 2004, pp. 404-411.

[4] J. Carbonell and J. Goldstein, “The Use of MMR, Diversity-Based Reranking for Reordering Documents and Producing Summaries,” Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval, 1998, pp. 335-336.

[5] Y. Zhang, J. E. Meng, and M. Pratama, “Extractive Document Summarization Based on Convolutional Neural Networks,” In IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, 2016, pp. 918-922.

[6] J. Cheng and M. Lapata, “Neural summarization by extracting sentences and words,” Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, vol. 1, 2016, pp. 484-494.

[7] Q. Zhou, N. Yang, F. Wei, S. Huang, M. Zhou, and T. Zhao, “Neural Document Summarization by Jointly Learning to Score and Select Sentences,” Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, vol. 1, 2018, pp. 654-663.

[8] K. Al-Sabahi, Z. Zuping, and M. Nadher, “A Hierarchical Structured Self-Attentive Model for Extractive Document Summarization (HSSAS),” IEEE Access, vol. 6, pp. 24205-24212, 2018.

[9] M. Zhong, P. Liu, Y. Chen, D. Wang, X. Qiu, and X. Huang, “Extractive Summarization as Text Matching,” Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020, pp. 6197-6208.

[10] C. Rioux, S. A. Hasan, and Y. Chali, “Fear the REAPER: A system for automatic multidocument summarization with reinforcement learning,” Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014, pp. 681-690.

[11] S. Hen, M. Mieskes, and I. Gurevych, “A reinforcement learning approach for adaptive single and multi-document summarization,” Proceedings of International Conference of the German Society for Computational Linguistics and Language Technology, 2015, pp. 3-12.

[12] S. Narayan, S. B. Cohen, and M. Lapata, “Ranking Sentences for Extractive Summarization with Reinforcement Learning,” Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1, 2018, pp. 1747-1759.

[13] Q. U. Nguyen, T. A. Pham, C. D. Truong, and X. H. Nguyen, “A Study on the Use of Genetic Programming for Automatic Text Summarization,” Proceedings of 2012 Fourth International Conference on Knowledge and Systems Engineering, 2012, pp. 93-98.

[14] Q. T. Lam, T. P. Pham, and D. H. Do, “Automatic Vietnamese Text Summarization with Model Sequence-to-sequence,” (in Vietnamese), Scientific Journal of Can Tho University, Special topic: Information Technology, pp. 125-132, 2017.

[15] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed representations of words and phrases and their compositionality,” Proceedings of the 26th International Conference on Neural Information Processing Systems, vol. 2, 2013, pp. 3111-3119.

[16] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word representation,” Proceedings of the 2014 Conference on EMNLP, 2014, pp. 1532-1543.

[17] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” Proceedings of NAACL-HLT 2019, 2019, pp. 4171-4186.

[18] I. Turc, M. W. Chang, K. Lee, and K. Toutanova, “Well-Read Students Learn Better: On the Importance of Pre-training Compact Models,” arXiv:1908.08962 [cs.CL], 2019.

[19] T. Pires, E. Schlinger, and D. Garrette, “How multilingual is Multilingual BERT?,” Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019, pp. 4996-5001.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. R. Miller, “Playing Atari with Deep Reinforcement Learning,” arXiv:1312.5602v1 [cs.LG], 2013.

[21] C. Y. Lin, “Rouge: A package for automatic evaluation of summaries,” 2004. [Online]. Available: https://aclanthology.org/W04-1013.pdf. [Accessed July 11, 2021].

[22] Y. Kim, “Convolutional neural networks for sentence classification,” Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014, pp. 1746-1751.

[23] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural Networks,” Proceedings of the 27th International Conference on Neural Information Processing Systems, vol. 2, 2014, pp. 3104-3112.

[24] K. Cho, B. V. Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, “Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation,” Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014, pp. 1724-1734.

[25] K. M. Hermann, T. Kocisky, E. Grefenstette, L. Espeholt, W. Kay, M. Suleyman, and P. Blunsom, "Teaching machines to read and comprehend,” Proceedings of the 28th International Conference on Neural Information Processing Systems, vol. 1, 2015, pp. 1693-1701.

[26] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving Language Understanding by Generative Pre-Training,” 2018. [Online]. Available: https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf. [Accessed April 23, 2021].




DOI: https://doi.org/10.34238/tnu-jst.4747

Refbacks

  • There are currently no refbacks.
TNU Journal of Science and Technology
Rooms 408, 409 - Administration Building - Thai Nguyen University
Tan Thinh Ward - Thai Nguyen City
Phone: (+84) 208 3840 288 - E-mail: jst@tnu.edu.vn
Based on Open Journal Systems
©2018 All Rights Reserved