MOLECULAR PHYLOGENY OF MACROSOLEN (BLUME) RCHB. (LORANTHACEAE) FROM VIETNAM BASED ON MOLECULAR DATA
About this article
Received: 16/03/22                Revised: 27/04/22                Published: 28/04/22Abstract
Exploring the phylogenetic relationships between taxa provides important information for science. The phylogenetic study of Macrosolen was conducted based on molecular data sets of 27 taxa with five DNA regions including chloroplast rbcL, matK, and trnL-F and nuclear ribosomal (small subunit rDNA and large subunit rDNA) regions to reconstruct the phylogenetic relationship of Macrosolen. The Maximum likelihood (ML) and Bayesian inference (BI) methods were used to build the phylogenetic trees. The results of molecular analyses strongly supported the non-monophyly of Macrosolen with two major clades within the genus. The nest of the three genera Elytranthe, Lepidaria, and Macrosolen in the phylogenetic tree was recognized to be congruent in their morphology, molecules and distribution, but further study is necessary to resolve generic boundaries for stable classification for the three genera. The endemic species of Vietnam M. bidoupensis well supported as closely related to M. tricolor by molecular data. Macrosolen from Vietnam is genetically congruent with its individuals of the same species from other countries.
Keywords
Full Text:
PDFReferences
[1] D. L. Nickrent, “The Parasitic Plant Connection,” 1997 onwards. [Online]. Available: http://parasiticplants.siu.edu. [Accessed March 2022].
[2] B. Liu, C. T. Le, R. L. Barrett, D. L. Nickrent, Z. D. Chen, L. M. Lu, and R. Vidal-Russell, “Diversification agrees with emergence of tropical forests and radiation of songbirds,” Molecular Phylogenetics and Evolution, vol. 124, pp. 199-212, 2018.
[3] H. H. Pham, An Illustrated Flora Vietnam, vol. 2, Ho Chi Minh City: Young Publishing House, 2003.
[4] H. S. Qiu and M. G. Gilbert, “Loranthaceae,” in Flora of China, vol. 5, Z. Y. Wu, P. H. Raven and D. Y. Hong, Eds., Beijing: Science Press, St. Louis: Missouri Botanical Garden Press, 2003, pp. 220-239.
[5] J. Kuijt, “Santalales,” in The families and genera of vascular plants Flowering plants: Eudicots; Santalales, Balanophorales, vol. 12, J. Kuijt and B. Hansen, Eds., Cham, Switzerland: Springer, 2015, pp. 137-141.
[6] C. A. Wilson and C. L. Calvin, “An origin of aerial branch parasitism in the mistletoe family, Loranthaceae,” American Journal of Botany, vol. 93, pp. 787-79, 2006.
[7] R. Vidal-Russell and D. L. Nickrent, “Evolutionary relationship in the showy Mistletoe family (Loranthaceae),” American Journal of Botany, vol. 95, pp. 1015-1029, 2008a.
[8] R. Vidal-Russell and D. L. Nickrent, “The first mistletoes, origins of aerial parasitism in Santalales,” Molecular Phylogenetics and Evolution, vol. 47, pp. 523-537, 2008b.
[9] D. L. Nickrent, V. Malécot, R. Vidal-Russell, and J. P. Der, “A revised classification of Santalales,” Taxon, vol. 592, pp. 538-558, 2010.
[10] S. Tagane, V. S. Dang, N. V. Ngoc, H. T. Binh, N. Komada, J.S. Wai, A. Naiki, H. Nagamasu, H. Toyama, and T. Yahara, “Macrosolen bidoupensis (Loranthaceae), a new species from Bidoup Nui Ba National Park, southern Vietnam,” PhytoKeys, vol. 80, pp. 113-120, 2017.
[11] P. Taberlet, L. Gielly, G. Pautou, and J. Bouvet, “Universal primers for amplification of three non-coding regions of chloroplast DNA,” Plant Molecular Biology, vol. 17, pp.1105-1109, 1991.
[12] A. Drummond, B. Ashton, S. Buxton, M. Cheung, A. Cooper, C. Duran, M. Field, J. Heled, M. Kearse, S. Markowitz, R. Moir, S. Stones-Havas, S. Sturrock, T. Thierer, and A. Wilson, “Geneious,” version 5.4, 2011. [Online]. Available: http://www.geneious.com. [Accessed December 2021].
[13] R. C. Edgar, “MUSCLE: multiple sequence alignment with high accuracy and high throughput,” Nucleic Acids Research, vol. 32, pp. 1792-1797, 2004.
[14] A. Stamatakis, “RAxML-VI-HPC, maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models,” Bioinformatics, vol. 2221, pp. 2688-2690, 2006.
[15] A. Stamatakis, P. Hoover, and J. Rougemont, “A Rapid Bootstrap Algorithm for the RAxML Web Servers,” Systematics Biology, vol. 575, pp. 758-771, 2008.
[16] D. Darriba, G. L. Taboada, , R. Doallo, and D. Posada, “jModelTest 2: more models, new heuristics and parallel computing,” Nature Methods, vol. 9, pp. 772, 2012.
[17] F. Ronquist, M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M. A. Suchard, and J. P. Huelsenbeck, “MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space,” Systematic Biology, vol. 61, pp. 539-542, 2012.
[18] A. Rambaut, M. A. Suchard, D. Xie, and A. J. Drummond, “Tracer v.1.6,” 2014. [Online]. Available: http://tree.bio.ed.ac.uk/software/tracer. [Accessed January 2022].
[19] D. L. Swofford, PAUP*: Phylogenetic analysis using parsimony (* and other methods), ver. 4.0.b10, Sunderland: Sinauer Associates, 2002.
[20] V. Malécot and D. L. Nickrent, “Molecular phylogenetic relationships of Olacaceae and related Santalales,” Systematic Botany, vol. 33, pp. 97-106, 2008.
[21] V. Manzanilla, A. Kool, N. L. Nguyen, V. H. Nong, T. T. H. Le, and H. De Boer, “Phylogenomics and barcoding of Panax: Toward the identifcation of ginseng species,” BMC Evolutionary Biology, vol. 18, pp. 1-14, 2018.
[22] N. L. Nguyen, L. B. H. Pham, T. T. H. Huynh, H. H. Nguyen, H. H. Ha, D. T. Nguyen, and T. T. H. Le, “Species discrimination of novel chloroplast DNA barcodes and their application for identifcation of Panax (Aralioideae, Araliaceae),” PhytoKeys, vol. 188, pp. 1-18, 2022.
[23] B. H. Danser, “Miscellaneous notes on Loranthaceae,” Blumea, vol. 2, pp. 34-59, 1936.
[24] B. A. Barlow, “Loranthaceae,” in Flora Malesiana Series 1, vol. 13, C. Kalkman, P. F. Stevens, D. W. Kirkup, W. J. J. O. de Wilde, and H. P. Nooteboom, Eds. Leiden: National Herbarium of the Netherlands, 1997, pp. 209-401.DOI: https://doi.org/10.34238/tnu-jst.5696
Refbacks
- There are currently no refbacks.





