BIOLOGICAL CHARACTERISTICS AND STRATEGIES OF STIMULATING ADENOVIRUS ACTIVITIES TO ONCOLYTIC | Cường | TNU Journal of Science and Technology

BIOLOGICAL CHARACTERISTICS AND STRATEGIES OF STIMULATING ADENOVIRUS ACTIVITIES TO ONCOLYTIC

About this article

Received: 13/09/22                Revised: 07/12/22                Published: 20/12/22

Authors

1. Doan Manh Cuong Email to author, TNU - University of Information and Communication Technology
2. Tran Thi Thanh Huong, TNU - University of Information and Communication Technology
3. Tran Duc Hoang, TNU - University of Information and Communication Technology

Abstract


Currently, scientists are always trying to find new cancer treatments in which, employing cytolytic virus to treat cancer has long been paid attention to and aiming at influencing on the virus’s genome for the improvement of treatment effectiveness. Adenovirus is the type of common choice in the method of cell destruction because it can significantly eliminate local immunosuppression and activate anti-tumor immune responses. The objective of this article is to provide information about operation mechanism and some genetic modification strategies of adenovirus; in order to improve anti-tumor activities. Writers have used ‘cytolytic virus’ to collect and analyze information about genetic transformation strategies on website: www.ncbi.nlm.nih.gov from 2014 until now. Adenovirus can be modified capsid (insert peptides or protein domains into the viral capsid) or remove a gene fragment in the aim of enhancing anti-tumor activities without influencing on normal cells’ operations. Clinically, the application of genetically-modified cytolytic virus promises a bright future for cancer treatment.

Keywords


Cell; Immunity; Changed; Tumor; Experiment

References


[1] C. J. Breitbach, B. D. Lichty, and J. C. Bell, “Oncolytic viruses: therapeutics with an identity crisis,” Ebio Medicine, vol. 9, pp. 31-36, 2016.

[2] Z. S. Guo, Z. Liu, S. Kowalsky, M. Feist, P. Kalinski, B. Lu et al., “Oncolytic immunotherapy: conceptual evolution, current strategies, and future perspectives,” Frontiers Immunology, vol. 8, pp. 550-555, 2017.

[3] K. Taipale, I. Liikanen, J. Juhila, R. Turkki, S. Tahtinen, M. Kankainen et al., “Chronic activation of innate immunity correlates with poor prognosis in cancer patients treated with oncolytic adenovirus,” Moleculer Therapy, vol. 24, pp. 175-183, 2016.

[4] S. E. Lawler and E. A. Chiocca, “Oncolytic virus–mediated immunotherapy: a combinatorial approach for cancer treatment,” Journal Clinical Oncology, vol. 33, pp. 2812-2814, 2015.

[5] M. C. Brown and M. Gromeier, “Oncolytic immunotherapy through tumor-specific translation and cytotoxicity of poliovirus,” Discovery Medicine, vol. 19, pp. 359-365, 2015.

[6] H. L. Kaufman, F. J. Kohlhap, and A. Zloza, “Oncolytic viruses: a new class of immunotherapy drugs,” Nature Review Drug Discovery, vol. 14, no. 9, pp. 642-662, 2015.

[7] J. J. Rojas, P. Sampath, B. Bonilla, A. Ashley, W. Hou, D. Byrd et al., “Manipu-lating TLR signaling increases the anti-tumor T cell response induced by viral cancer therapies,” Cell Report, vol. 15, pp. 264-273, 2016.

[8] J. D. Freedman, J. Hagel, E. M. Scott, I. Psallidas, A. Gupta, L. Spiers et al., “Oncolytic adenovirus expressing bispecific antibody targets T-cell cytotoxicity in cancer biopsies,” EMBO Moleculer Medicine, vol. 9, pp. 1067-1087, 2017.

[9] M. C. Brown and M. Gromeier, “Cytotoxic and immunogenic mechanisms of recombinant oncolytic poliovirus,” Current Opinion in Virology, vol. 13, pp. 81-85, 2015.

[10] F. Yu, X. Wang, Z. S. Guo, D. L. Bartlett, S. M. Gottschalk, and X. T. Song, “T-cell engager-armed oncolytic vaccinia virus significantly enhances antitumor therapy,” Molcular Therapy, vol. 22, pp. 102-111, 2014.

[11] H. Huang, Y. Liu, W. Liao, Y. Cao, Q. Liu, Y. Guo, Y. Lu, and Z. Xie, “Oncolytic adenovirus programmed by synthetic gene circuit for cancer immunotherapy,” Nat Commun, vol. 10, pp. 4795- 4801, 2019.

[12] J. R. Frost, M. Mendez, A. M. Soriano, L. Crisostomo, O. Olanubi, S. Radko, and P. Pelka, “Adenovirus 5 E1A-Mediated Suppression of p53 via FUBP1,” Journal of virology, vol. 92, pp. 105-112, 2018.

[13] L. X. Dai, J. Yang, J. M. Liu, S. Huang, B. N. Wang, H. Li, J. Yang, Z. Y. Zhao, K. Cao, and M. Y. Li, “Adenovirus-Mediated CRM197 Sensitizes Human Glioma Cells to Gemcitabine by the Mitochondrial Pathway,” Cancer biotherapy & radiopharmaceuticals, vol. 34, pp. 171-180, 2019.

[14] C. A. Fajardo, S. Guedan, L. A. Rojas, R. Moreno, M. Arias-Badia, J. De Sostoa et al., “Oncolytic adenoviral delivery of an EGFR-targeting T-cell engager improves antitumor efficacy,” Cancer Research, vol. 77, pp. 2052-2063, 2017.

[15] K. Harrington, D. J. Freeman, B. Kelly, J. Harper, and J. C. Soria, “Optimizing oncolytic virotherapy in cancer treatment,” Nature reviews, vol. 18, pp. 689-706, 2019.

[16] X. Li, P. Wang, H. Li, X. Du, M. Liu, Q. Huang et al., “The efficacy of oncolytic adenovirus is mediated by T-cell responses against virus and tumor in Syrian hamster model,” Clinical Cancer Research, vol. 23, pp. 239-249, 2017.

[17] K. Geletneky, J. P. Nuesch, A. Angelova, I. Kiprianova, J. Rommelaere, “Double-faceted mechanism of parvoviral oncosuppression,” Current Opinion Virology, vol. 13, pp. 17-24, 2015.

[18] K. H. Jung, I. K. Choi, H. S. Lee, H. H. Yan, M. K. Son, H. M. Ahn, J. Hong, C. O. Yun, and S. S. Hong, “Oncolytic adenovirus expressing relaxin (YDC002) enhances therapeutic efficacy of gemcitabine against pancreatic cancer,” Cancer letters, vol. 396, pp. 155-166, 2017.

[19] G. Marelli, A. Sica, L. Vannucci, and P. Allavena, “Inflammation as target in cancer therapy,” Currence Opinion Pharmacol, vol. 35, pp. 57-65, 2017.

[20] P. J. Ferguson, A. Sykelyk, R. Figueredo, and J. Koropatnick, “Synergistic cytotoxicity against human tumor cell lines by oncolytic adenovirus dl1520 (ONYX-015) and melphalan,” Tumori, vol. 102, pp. 31-39, 2016.

[21] R. Garcia-Carbonero, R. Salazar, I. Duran, I. Osman-Garcia, L. Paz-Ares, J. M. Bozada et al., “Phase 1 study of intravenous administration of the chimeric adenovirus enadenotucirev in patients undergoing primary tumor resection,” Journal for Immunotherapy of Cancer, vol. 5, pp. 65-71, 2017.

[22] A. Ribas, R. Dummer, I. Puzanov, A. Vanderwalde, R. H. I. Andtbacka, O. Michielin et al., “Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy,” Cell, vol. 170, pp. 1109-1119, 2017.

[23] M. C. Bourgeois-Daigneault, D. G. Roy, A. S. Aitken, N. El Sayes, N. T. Martin, O. Varette et al., “Neoadjuvant oncolytic virotherapy before surgery sensitizes triple-negative breast cancer to immune checkpoint therapy,” Science Translational Medicine, vol. 10, pp. 1641-1649, 2018.

[24] P. Darvin, S. M. Toor, V. Sasidharan Nair, and E. Elkord, “Immune checkpoint inhibitors: recent progress and potential biomarkers,” Experimental & molecular medicine, vol. 50, pp. 1-11, 2018.

[25] S. L. Ross, M. Sherman, P. L. Mcelroy, J. A. Lofgren, G. Moody, P. A. Baeuerle et al., “Bispecific T cell engager (BiTE(R)) antibody constructs can mediate bystander tumor cell killing,” PLoS One, vol. 12, pp. 234-239, 2017.

[26] L. S. Chard, E. Maniati, P. Wang, Z. Zhang, D. Gao, J. Wang et al., “A vaccinia virus armed with interleukin-10 is a promising therapeutic agent for treatment of murine pancreatic cancer,” Clinical Cancer Research, vol. 21, pp. 405-416, 2015.

[27] E. Ilett, T. Kottke, J. Thompson, K. Rajani, S. Zaidi, L. Evgin et al., “Prime-boost using separate oncolytic viruses in combination with checkpoint blockade improves anti-tumour therapy,” Gene Therapy, vol. 24, pp. 21-30, 2017.

[28] P. Wang, X. Li, J. Wang, D. Gao, Y. Li, H. Li et al., “Re-designing interleukin-12 to enhance its safety and potential as an anti-tumor immunotherapeutic agent,” Natural Communication, vol. 8, pp. 1390-1395, 2017.

[29] S. Li, F. Wang, Z. Zhai, S. Fu, J. Lu, H. Zhang, H. Guo, X. Hu, R. Li, and Z. Wang,” Rodriguez R. Synergistic effect of bladder cancer-specific oncolytic adenovirus in combination with chemotherapy,” Oncology letters, vol. 14, no. 2, pp. 2081-2088, 2017.

[30] E. Galanis, P. J. Atherton, M. J. Maurer et al., “Oncolytic measles virus expressing the sodium iodide symporter to treat drug-resistant ovarian cancer,” Cancer Research, vol. 75, pp. 22-30, 2015.

[31] D. C. Le, A. S. Ho, and L. T. Nguyen, “Measles vaccine virus: a new therapy in cancer treatment,” Journal of Military Medicine, vol. 2, pp. 175-182, 2016.




DOI: https://doi.org/10.34238/tnu-jst.6502

Refbacks

  • There are currently no refbacks.
TNU Journal of Science and Technology
Rooms 408, 409 - Administration Building - Thai Nguyen University
Tan Thinh Ward - Thai Nguyen City
Phone: (+84) 208 3840 288 - E-mail: jst@tnu.edu.vn
Based on Open Journal Systems
©2018 All Rights Reserved