ASSESSMENT OF BIOACTIVITY OF ALIX BABYLONICA EXTRACT IN THAI NGUYEN PROVICE | Hiệp | TNU Journal of Science and Technology

ASSESSMENT OF BIOACTIVITY OF ALIX BABYLONICA EXTRACT IN THAI NGUYEN PROVICE

About this article

Received: 21/12/22                Revised: 18/04/23                Published: 20/04/23

Authors

1. Hoang Phu Hiep, TNU - University of Education
2. Pham Hong Chuyen, TNU - University of Education
3. Tu Quang Trung, TNU - University of Education
4. Pham Van Khang Email to author, TNU - University of Education

Abstract


Willows (Salix babylonica) are trees and shrubs that are widely distributed in Africa, North America, Europe, and Asia. This species is used in folk medicine and contains many biologically active substances, including salicin, a precursor of salicylic acid. In this study, we extracted 500g of ethanol extract from 6kg of fresh willow leaves using the reflux extraction method to determine its chemical composition and evaluate its antibacterial and antioxidant activities. The results showed that the ethanol extract of willow leaves contains phenolic, alkaloid, flavonoid, coumarin, and steroid groups. It also exhibits high antioxidant activity, with an average IC50 value of 5.65 µg/ml. Moreover, the ethanol extract of willow leaves exhibits strong antibacterial activity, especially against Gram-positive bacteria such as Staphylococcus aureus. However, its antibacterial activity against Gram-negative bacteria such as Pseudomonas aeruginosa and Citrobacter freundii is comparatively weaker. These research findings highlight the potential of willow trees as a natural alternative to antibiotics in the treatment of bacterial diseases in humans.

Keywords


Salix babylonica; Ethanol extract; Biological activity; Antibacterial; Antioxidant

References


[1] N. Tawfeek et al., “Phytochemistry, pharmacology and medicinal uses of plants of the genus Salix: an updated review,” Front. Pharmacol., vol. 12, no. February, pp. 1-30, 2021, doi: 10.3389/fphar.2021.593856.

[2] H. Singh, R. Raturi, and P. Badoni, “Isolation of secondary metabolites from the roots of Salix Babylonica,” IOP Conf. Ser. Mater. Sci. Eng., vol. 225, p. 12094, Aug. 2017, doi: 10.1088/1757-899X/225/1/012094.

[3] C. Fernandes et al., “Salicylates isolated from leaves and stems of Salix martiana Leyb. (Salicaceae),” Quim. Nova, vol. 32, pp. 983-986, Dec. 2008, doi: 10.1590/S0100-40422009000400029.

[4] Z. A. Shah et al., “Cytotoxic and anti-inflammatory salicin glycosides from leaves of Salix acmophylla,” Phytochem. Lett., vol. 17, pp. 107-113, 2016, doi: 10.1016/j.phytol.2016.07.013.

[5] C. Noleto-Dias, Y. Wu, A. Bellisai, W. J. Macalpine, M. H. Beale, and J. L. Ward, “Phenylalkanoid glycosides (non-salicinoids) from wood chips of Salix triandra × dasyclados hybrid willow,” Molecules, vol. 24, no. 6, 2019, Art. no. 1152, doi: 10.3390/molecules24061152.

[6] I. Mostafa et al., “Polyphenols from Salix tetrasperma Impair Virulence and Inhibit Quorum Sensing of Pseudomonas aeruginosa,” Molecules, vol. 25, no. 6, Mar. 2020, Art. no. 1341, doi: 10.3390/molecules25061341.

[7] Y. Eftekhari, A. Rustaiyan, M. Monajjemi, and R. A. Khavarinejad, “Study of anti-retroviral effects of Salix aegyptiaca L. Herbal extract on HIV-1 in vitro,” Int. J. Mol. Clin. Microbiol., vol. 4, no. 1, pp. 398-405, 2014. [Online]. Available: https://www.sid.ir/en/journal/ViewPaper.aspx?id=438917.

[8] E. Gligorić, R. Igić, L. Suvajdžić, and N. Grujić-Letić, “Species of the genus Salix L.: Biochemical screening and molecular docking approach to potential acetylcholinesterase inhibitors,” Appl. Sci., vol. 9, no. 9, 2019, doi: 10.3390/app9091842.

[9] M. Sobeh et al., “Salix tetrasperma Roxb. extract alleviates neuropathic pain in rats via modulation of the NF-κB/TNF-α/NOX/iNOS pathway,” Antioxidants (Basel, Switzerland), vol. 8, no. 10, Oct. 2019, doi: 10.3390/antiox8100482.

[10] K. Hostanska, G. Jürgenliemk, G. Abel, A. Nahrstedt, and R. Saller, “Willow bark extract (BNO1455) and its fractions suppress growth and induce apoptosis in human colon and lung cancer cells,” Cancer Detect. Prev., vol. 31, no. 2, pp. 129-139, 2007, doi: 10.1016/j.cdp.2007.03.001.

[11] J. G. Mahdi, “Medicinal potential of willow: A chemical perspective of aspirin discovery,” J. Saudi Chem. Soc., vol. 14, no. 3, pp. 317-322, 2010, doi: 10.1016/j.jscs.2010.04.010.

[12] V. D. Nguyen and V. T. Nguyen, Chemistry research methods of medicinal plants. Science and Technics Publishing House, 1978.

[13] J. Tabart, C. Kevers, J. Pincemail, J. O. Defraigne, and J. Dommes, “Comparative antioxidant capacities of phenolic compounds measured by various tests,” Food Chem., vol. 113, no. 4, pp. 1226-1233, Apr. 2009, doi: 10.1016/J.FOODCHEM.2008.08.013.

[14] F. Hadacek and H. Greger, “Testing of antifungal natural products: Methodologies, comparability of results and assay choice,” Phytochem. Anal., vol. 11, pp. 137-147, 2000, doi: 10.1002/(SICI)1099-1565(200005/06)11:3<137::AID-PCA514>3.0.CO;2-I.

[15] E. González-Alamilla et al., “Antibacterial effect of the methanol extract of Salix babylonica against important bacteria in public Health,” Abanico Vet., vol. 10, no. 1, Jan. 2020, doi: 10.21929/ABAVET2020.1.

[16] A. Ishikado et al., “Willow bark extract increases antioxidant enzymes and reduces oxidative stress through activation of Nrf2 in vascular endothelial cells and Caenorhabditis elegans,” Free Radic. Biol. Med., vol. 65, pp. 1506-1515, Dec. 2013, doi: 10.1016/J.FREERADBIOMED.2012.12.006.

[17] G. Wahab, A. Sallam, A. Elgaml, M. F. Lahloub, and M. Afif, “Antioxidant and antimicrobial activities of Salix babylonica extracts,” World J. Pharm. Sci., vol. 6, pp. 1-6, Apr. 2018.

[18] G. M. Sulaiman, N. N. Hussien, T. R. Marzoog, and H. A. Awad, “Phenolic content, antioxidant, antimicrobial and cytotoxic activities of ethanolic extract of Salix Alba,” Am. J. Biochem. Biotechnol., vol. 9, no. 1, pp. 41–46, 2013, doi: 10.3844/ajbbsp.2013.41.46.

[19] K. S. Kaye, J. J. Engemann, H. S. Fraimow, and E. Abrutyn, “Pathogens resistant to antimicrobial agents: Epidemiology, molecular mechanisms, and clinical management,” Infect. Dis. Clin. North Am., vol. 18, no. 3, pp. 467-511, Sep. 2004, doi: 10.1016/J.IDC.2004.04.003.

[20] A. R. Ndhlala et al., “Antimicrobial, anthelmintic activities and characterisation of functional phenolic acids of Achyranthes aspera Linn.: A medicinal plant used for the treatment of wounds and ringworm in east Africa,” Front. Pharmacol., vol. 6, 2015, doi: 10.3389/FPHAR.2015.00274.




DOI: https://doi.org/10.34238/tnu-jst.7157

Refbacks

  • There are currently no refbacks.
TNU Journal of Science and Technology
Rooms 408, 409 - Administration Building - Thai Nguyen University
Tan Thinh Ward - Thai Nguyen City
Phone: (+84) 208 3840 288 - E-mail: jst@tnu.edu.vn
Based on Open Journal Systems
©2018 All Rights Reserved