EFFECT OF SIZE ON MAGNETIC AND OPTICAL PROPERTIES OF Fe3O4 NANOPARTICLES | Nguyên | TNU Journal of Science and Technology

EFFECT OF SIZE ON MAGNETIC AND OPTICAL PROPERTIES OF Fe3O4 NANOPARTICLES

About this article

Received: 24/12/22                Revised: 08/02/23                Published: 08/02/23

Authors

1. Luu Huu Nguyen, 1) Science and Technology Advanced Institute - Van Lang University, 2) School of Technology - Van Lang University
2. Nguyen Thi Ngoc Anh, Institute of Materials Science - Vietnam Academy of Science and Technology
3. Nguyen Thanh Huong, Institute of Materials Science - Vietnam Academy of Science and Technology
4. Do Khanh Tung, Institute of Materials Science - Vietnam Academy of Science and Technology
5. Pham Quang Ngan, Institute of Materials Science - Vietnam Academy of Science and Technology
6. Pham Hong Nam Email to author, Institute of Materials Science - Vietnam Academy of Science and Technology

Abstract


In this paper, the influence of nanoparticle size on magnetic properties (saturation magnetization MS, effective magnetic anisotropy Keff) and optical properties (energy band gap Eg) were investigated. Magnetic nanoparticles Fe3O4 (FO) were synthesized by co-precipitation with different reaction temperatures of 50°C, 60°C, 70°C, and 80°C. They had sizes of 8.7 nm, 10.1 nm, 10.4 nm, and 11.9 nm, respectively. While the value of saturation magnetization MS increased from 51.65 emu/g to 64.56 emu/g, their magnetic anisotropy value decreased from 18.26 kJ/m3 to 12.49 kJ/m3 when the value of diameter of magnetic nanoparticles Fe3O4 changed from 8.7 nm to 11.9 nm. In addition, the changing of the energy band gap Eg from 2.23 eV (~ 11.9 nm) to 2.75 eV (~ 8.7 nm) indicated the effect of nanoparticle size on optical properties for magnetic nanoparticles FO. The nanoparticle size is an important factor affecting the magnetic and optical properties of FO magnetic nanoparticles.

Keywords


Fe3O4 nanoparticles; Co-precipitation; Nanoparticle size; Magnetic properties; Optical properties

References


[1] K. K. Kefeni, T. A. M. Msagati, T. T. Nkambule, and B. B. Mamba, “Spinel ferrite nanoparticles and nanocomposites for biomedical applications and their toxicity,” Mater. Sci. Eng. C, vol. 107, 2020, Art. no. 110314(19).

[2] K. K. Kefeni and B. B. Mamba, “Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater treatment,” SM&T, vol. 23, 2020, Art. no. E00140(18).

[3] K. Kalantari, M. B. Ahmad, H. R. F. Masoumi, K. Shameli, M. Basri, and R. Khandanlou, “Rapid Adsorption of Heavy Metals by Fe3O4/Talc Nanocomposite and Optimization Study Using Response Surface Methodology,” Int. J. Mol. Sci., vol. 15, pp. 12913-12927, 2014.

[4] A. E. Deatsch and B. A. Evans, “Heating efficiency in magnetic nanoparticle hyperthermia,” J. Magn. Magn. Mater., vol. 354, pp. 163-172, 2014.

[5] F. Chen, N. Ilyas, X. Liu, Z. Li, S. Yan, and H. Fu, “Size Effect of Fe3O4 Nanoparticles on Magnetism and Dispersion Stability of Magnetic Nanofluid,” Front. Energy Res., vol. 9, 2021, Art. 780008.

[6] L. H. Nguyen, V. T. K. Oanh, P. H. Nam, D. H. Doan, N. X. Truong, N. X. Ca, P. T. Phong, L. V. Hong, and T. D. Lam, “Increase of magnetic hyperthermia efficiency due to optimal size of particles: theoretical and experimental results,” J. Nanopart. Res., vol. 22, 2020, Art. no. 258(16).

[7] C. Bai, P. Hu, N. Liu, G. Feng, D. Liu, Y. Chen, M. Ma, N. Gu, and Y. Zhang, “Synthesis of Ultrasmall Fe3O4 Nanoparticles as T1–T2 Dual-Modal Magnetic Resonance Imaging Contrast Agents in Rabbit Hepatic Tumors,” ACS Appl. Nano Mater., vol. 3, pp. 3585-3595, 2020.

[8] Y. Li, W. Duan, X. Lu, S. Yang, and X. Wen, “Synthesis of strawberry-like Fe3O4@SiO2@Ag composite colloidal particles for constructing responsive photonic crystals,” Opt., vol. 94, pp. 423-429, 2019.

[9] I. M. Obaidat, B. Issa, and Y. Haik, “Magnetic properties of magnetic nanoparticles for efficient hyperthermia,” Nanomaterials, vol. 5, pp. 63-89, 2015.

[10] Y.-w. Jun, Y.-M. Huh, J.-s. Choi, J.-H. Lee, H.-T. Song, S. Kim, S. Yoon, K.-S. Kim, J.-S. Shin, and J.-S. Suh, “Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging,” J. Am. Chem. Soc., vol. 127, pp. 5732-5733, 2005.

[11] F. Ozel, H. Kockar, and O. Karaagac, “Growth of iron oxide nanoparticles by hydrothermal process: effect of reaction parameters on the nanoparticle size,” J. Supercond. Nov. Magn., vol. 28, pp. 823-829, 2015.

[12] Y. Dong, B. Wen, Y. Chen, P. Cao, and C. Zhang, “Autoclave-free facile approach to the synthesis of highly tunable nanocrystal clusters for magnetic responsive photonic crystals,” RSC Adv., vol. 6, pp. 64434-64440, 2016.

[13] A. H. Habib, C. L. Ondeck, P. Chaudhary, M. R. Bockstaller, and M. E. McHenry, “Evaluation of iron-cobalt/ferrite core-shell nanoparticles for cancer thermotherapy,” J. Appl. Phys., vol. 103, pp. 07A307-1-07A307-3, 2008.

[14] M. E. Sadat, M. K. Baghbador, A. W. Dunn, H. P. Wagner, R. C. Ewing, J. Zhang, H. Xu, G. M. Pauletti, D. B. Mast, and D. Shi, “Photoluminescence and photothermal effect of Fe3O4 nanoparticles for medical imaging and therapy,” Appl. Phys. Lett., vol. 105, 2014, Art. no. 091903.

[15] A. Radoń, A. Drygała, Ł. Hawełek, and D. Łukowiec, “Structure and optical properties of Fe3O4 nanoparticles synthesized by co-precipitation method with different organic modifiers,” Mater. Charact., vol. 131, pp. 148-156, 2017.

[16] L. T. Dat, L. H. Nguyen, N. H. Nam, T. D. Van, N. X. Truong, V.-Q. Nguyen, P. T. Phong, and P. H. Nam, “Dependence of specific absorption rate on concentration of Fe3O4 nanoparticles: from the prediction of Monte Carlo simulations to experimental results,” J. Nanopart. Res., vol. 24, pp. 1-13, 2022.

[17] Z. J. Zhang, X. Y. Chen, B. N. Wang, and C. W. Shi, “Hydrothermal synthesis and self-assembly of magnetite (Fe3O4) nanoparticles with the magnetic and electrochemical properties,” J. Cryst. Growth., vol. 310, pp. 5453-5457, 2008.

[18] J. Liang, L. Li, M. Luo, J. Fang, and Y. Hu, “Synthesis and properties of magnetite Fe3O4 via a simple hydrothermal route,” Solid State Sci., vol. 12, pp. 1422-1425, 2010.

[19] R. E. Rosensweig, “Heating magnetic fluid with alternating magnetic field,” J. Magn. Magn. Mater. vol. 252, pp. 370-374, 2002.

[20] G. F. Goya, T. S. Berquo, F. C. Fonseca, and M. P. Morales, “Static and dynamic magnetic properties of spherical magnetite nanoparticles,” J. Appl. Phys., vol. 94, pp. 3520-3528, 2003.

[21] R. H. Kodama, S. A. Makhlouf, and A. E. Berkowitz, “Finite size effects in antiferromagnetic NiO nanoparticles,” Phys. Rev. Lett., vol. 79, 1997, Art. no. 1393.

[22] R. Yanes, O. Chubykalo-Fesenko, H. Kachkachi, D. A. Garanin, R. Evans, and R. W. Chantrell, “Effective anisotropies and energy barriers of magnetic nanoparticles with Néel surface anisotropy,” Phys. Rev. B, vol. 76, 2007, Art. no. 064416(6).

[23] J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi B, vol. 15, pp. 627-637, 1966.




DOI: https://doi.org/10.34238/tnu-jst.7162

Refbacks

  • There are currently no refbacks.
TNU Journal of Science and Technology
Rooms 408, 409 - Administration Building - Thai Nguyen University
Tan Thinh Ward - Thai Nguyen City
Phone: (+84) 208 3840 288 - E-mail: jst@tnu.edu.vn
Based on Open Journal Systems
©2018 All Rights Reserved